
Guide to Using
Campaign Manager for Windows

version 1.15

By New Fangled Software
Copyright (c) 1993    D. F. D'Angelo

all rights reserved

Contents
Introduction
        And Getting Started

Welcome!
What's New
Installation
Starting the Program

Tutorials
Building A Character
Building A Campaign

Reference
Command Line Parameters
Player vs. GM Access
Equations
The Main Window
The Filter Dialog
Objects
Printing
The Dice Roller
Program Configuration
Campaign Configuration
Menus

License and Registration
License Agreement/Disclaimer
Registration Form
Product Support

Welcome!
Welcome to Campaign Manager, the computer solution to all the hassles of managing a rich, varied and
unique campaign.    By creating this program I hope to relieve some of the burden that goes along with
customizing a campaign.    Campaign Manager was designed to allow Game Masters to easily create,
modify and keep track of all the information he or she uses.    It is also designed to allow players to create
characters specifically for a given campaign.

Most GMs start out working within the rules for a given role-playing system laid out clearly and concisely
in the rule books.    But it usually doesn't take very long for the GM to start modifying those rules in one
way or another.    If nothing else a GM will want to create his own monsters, races, magical items, spells,
etc.    The paperwork for all this creativity can be mind boggling.    Simply keeping track of all the rules in
all the official supplements can be a chore.    And what about all those articles from gaming magazines?

But now that you have Campaign Manager you have a program designed for storage and retrieval of all
that information.    But CampMan is not just a database.    Within this program you can specify how all your
objects interrelate.    In addition, by storing all this information in CampMan you simultaneously create a
unique character creation system designed specifically for your campaign.    You can let your players use

this program to build characters which follow the rules you've laid out, use the objects you've created, and
reference only the supplements you've added.

Included Topics:
CampMan's Purpose
Who needs this program?
This is shareware
Limitations
How to use this manual

CampMan's Purpose
Campaign Manager is intended to be one solution to that endless of GM quests, to find an easy, simple
way to create and manage a unique, personalized campaign.    CampMan is not intended to teach you
how to play role-playing games.    It is assumed that you already know how to play one of the many role-
playing games on the market.    The game(s) you know how to play will probably serve as your guide to
what kind of campaign you wish to create with this program.

Although I have tried to make CampMan easy to use, that is not to say that CampMan is not a powerful
program which will take practice to understand and use properly.    It was purposely designed to be
generic enough to adapt to most games on the market and to allow you to come up with your own, unique
gaming system.    It is the very fact that CampMan is generic that makes it so powerful.

next topic:
Who needs this program?

Who needs this program?
Roleplayers
Anyone who is sick and tired of searching through a half-dozen rule books to create their characters.   
Campaign Manager lets you keep all that information in one place.   

Game Masters
Every GM who has a bookshelf full of rule books, magazine articles and handwritten notes they have to
take to all their games.    Every GM who has to constantly look over his/her players' shoulders while their
creating characters to remind them of the rules.    Campaign Manager not only lets you store and retrieve
all the rules, objects and paperwork but also give's you a custom character creation program for your
players.

next topic:
This is shareware

This is shareware
This version of Campaign Manager has been released as shareware.    If I had chosen a commercial
route, it might very well have been several more years until this program was released.    It also would
probably have cost more for you to buy the program.

By releasing CampMan as shareware, I grant you the right to use the program for an evaluation period of
30 days.    If you find the program to your liking and wish to continue using it, you must pay a $20
registration fee.

Why you should register
As a self-employed and independent programmer I have to make a living.    It is your registration fee
which pays my bills.    If a program I create does not bring in any money, I must abandon its development
in favor of those that do.

This program is nowhere near the final version I hope to create.    There are many features I plan to
include in future versions and I have already thought of ways to improve the current features.    By
showing your support, you encourage me to go ahead with those plans.    So if you like the current version
and wish to see better, improved versions it is in your best interests to register.

next topic:
Limitations

Limitations
Campaign manager has certain limitations a would-be user should keep in mind.

· Although characteristics have been designed to accept any value, attributes are designed to
accept only positive, non-zero values.    Since there exist easy ways around this limitation, current
plans do not include changing this aspect of the program.

· Although this program can print notes, gm notes, creatures, races, and characters, it can not
distribute the information over multiple pages.    This can cause the information to "scroll off page"
if printed in too large a font.    But the fact that you can print in either portrait or landscape mode in
fonts as small as 8 pts should go a long way in alleviating this problem. (You may be surprised at
how much information can fit on a page when printed in landscape with an 8 pt font)

· CampMan does not currently support printers which aren't BitBlt compatible (i.e. plotters or text
only printers)

· This program does not have WYSIWYG capabilities.    That is, you can't view a note/character on
screen the way it will print.    This will not be too much of a problem for most situations.    However,
there is one situation where this is a problem... tables of information in notes.    For more
information on this problem and circumventing it as much as possible see Printing and The
Problem With Tables Printing.

next topic:
How to use this manual

How to use this manual
This manual is distributed as a Windows help file.    The capability of having on-line access to this material
as well as the hyper-textual nature of the medium enhances the usefulness of the manual.

The first part, "Introduction and Getting Started", contains chapters on Installation and Starting the
Program.

The second part, "Tutorials", has two tutorials on how to use Campaign Manager.    If you are player, you
should go through the first tutorial Building A Character.

The first tutorial guides you through the creation of a character for a campaign (tutorial.cmp) specifically
designed for the tutorial.    Once you understand how to build a character for this sample campaign, you
should have little trouble building characters for the specific campaign(s) your GM will create.    GMs may
also find this tutorial useful in learning exactly how the objects they create relate to building characters.

The second tutorial is for GMs.    Building A Campaign guides you through the creation (from scratch) of
the campaign used in the previous tutorial.

The last part of this manual, "Reference", is devoted to chapters dealing with all the different aspects of
the program.    Unlike the previous two parts, this part is not intended to be read from beginning to end,
but to be explored when your understanding of a particular aspect of the program needs to be refreshed
or deepened.

To use this manual while running the program, simply choose a topic from the "Help" menu or press the
F1 key.    The "Reference" and "Menus" topics bring up different parts of the manual depending on which
window you are using.

What's New
Filter Dialog

The filter used to select what objects to list in the main window has been moved to a
dialog box.    Also, a default filter can now be saved that will be used whenever CampMan
is launched.

In addition, while both the Filter dialog and Note Search dialog are open, it is possible to
"link" object filtering to either include only those notes listed or to exclude all the notes
listed in the Note Search Dialog's found list.

For more information see "The Filter Dialog"

Append Button in Note Search Dialog
A new button has been added to the Note Search dialog that will search for notes which
match the given criteria and append them to the current list of found notes.

For more information see The Note Search Dialog

Copy/Paste Object Names in lists
It is now possible to use "Ctrl-C" to copy the selected object name in the main window's
objects list to the Clipboard.    Similarly, it is possible to use "Ctrl-V" to insert the name in a
race/character's attributes or items list.

For more information see the side notes in The Main Window and Characters

Print Cost Breakdown for Races and Characters
You can now print a listing of the individual costs which contribute to a race/character's
total cost.

For more information see Printing

VGASYSI.FON Replacement VGA System Font
CampMan uses the Windows "system" font which is "sans-serif."    This causes the letters
"I" and "l" to be indistinguishable from one another.    I have therefore included a
replacement system font.

VGASYSI.FON is exactly the same file as VGASYS.FON except that "serifs" have been
added to capital i's.

For more information see Replacing the VGA system font

Installation
The following table lists the files that come with the program.    To install the program, create a directory to
hold the Campaign Manager program files and use the following table to determine what files to copy
where:

File Copy To Description
campman.exe CampMan directory program executable
campman.hlp CampMan directory program help file
tutorial.cmp CampMan directory tutorial campaign
vwbas20.dll CampMan directory runtime library
vwvm20.dll CampMan directory runtime library
vwfloat.dll † CampMan directory floating-point emulator
commdlg.dll ‡ windows\system directory common resource library
winhelp.exe ‡ windows directory Windows 3.1 help utility
winhelp.hlp ‡ windows directory winhelp.exe help file
vgasysi.fon CampMan directory replacement VGA system font

† the floating-point emulator is only needed if your computer does not have
an 80x87 math coprocessor.

‡ these files are only needed if you are running the program under Windows
3.0

subtopics:
Creating a CampMan Icon
Replacing the VGA system font

Creating a CampMan Icon
The following steps are used to create an icon in the Program Manager that comes with windows.    If you
use a different program launcher, you will have to consult its documentation.

1. Activate a group window in which to place the new icon.

2. Select "New" from the "File" menu.

3. Click on Program Item and then press OK.

4. Type Campaign Manager in the description field.

5. Type campman.exe into the command line field.

6. Enter the full path to the program directory you created into the working directory field.

7. When finished, press the OK button and the icon will be created.

Replacing the VGA system font
To use the replacement VGA system font, your system must currently use the VGASYS.FON system font
that comes with Windows 3.1 and you must edit the SYSTEM.INI file as follows:

1. Using the File Manager, copy SYSTEM.INI to SYSTEM.BAK

2. Launch the Notepad utility that comes with Windows.

3. Select "Open" from the "File" menu.

4. Type system.ini in the filename field and press OK.

5. Search for the line "fonts.fon=vgasys.fon"

6. Replace the text "vgasys.fon" with the path/filename to the new font
(i.e.    "c:\campman\vgasysi.fon")

7. Select "Save" from the "File" menu.

8. Exit and restart Windows.

The system font should now look exactly as it did before, except that capital i's now have serifs to
distinguish them from l's.    If Windows won't start are there are any other problems, simply recopy your
backup file, SYSTEM.BAK, to SYSTEM.INI

Starting the Program
To launch the program, double click on the icon you made during Installation.    After the log on screens
you will be prompted for your name.    If you want to start the program in Player Access mode simply type
in your name and press OK.    If you wish to start the program in GM Access mode, type in "GM" and
press OK.    You will then be asked to verify you identity by entering the GM's password.    For more
information see Player vs. GM Access.

Building A Character
This tutorial guides you through the creation of a sample character for the tutorial campaign provided with
Campaign Manager for Windows.    When you are done with the tutorial, you will have learned all you
need to know to build characters for the campaign(s) your GM will create.

This tutorial assumes you are familiar with the Windows operating environment.    In particular you should
know how to move/size/close a window, enter/modify text, use a menu and click on a button or list item.   
If you are not familiar with Windows you should first go through the Getting Started with Microsoft
Windows manual and the Windows tutorial.

Included Topics:
Creating a New Character
Object Descriptions
Playing with Characteristics
Modifying Attributes
Adding Possessions
A Character's Race
Saving changes to the campaign

Creating a New Character
If you haven't done so already, start the program in Player Access mode.    For more information, see
Starting the Program.

The first window you will see after the startup dialogs    is the main window.    It presents you with a    list of
object names and types for the loaded campaign.    At the moment, you will see only "Human" listed in the
objects list.    This is because we have not loaded a campaign into the program and you are seeing the
default, empty campaign.

To load a campaign you must choose "Load" from the "Campaign" menu.    This brings up a dialog box
used to select the file containing the campaign you wish to load.    Among the files listed should be
"tutorial.cmp".    Double-click on that filename.    After a moment to load the file, you will see a new list of
objects.

To create a character you need to select "Create Character" from the "Objects" menu.    This will bring up
a window titled "Character -- new" with the default statistics for a new character. Looking at the contents
you will see that "Human" has been entered as the character's race and you have been entered as the
character's player.    All we need to do now is to give this character a name.    Enter "Delgath" into the
name field and select "Save" from the "Character" menu.

In the next section, we will see how to get information about the objects in the campaign and how to keep
some notes about your character.

Next Topic:
Object Descriptions

Object Descriptions
When you saved your character you may have noticed that the main window was updated with the new
name and object type.    Try clicking on "Human" in the objects list.    When you select a name, the types
list is updated to show you all the different objects with that name.    Click on    "Race" in the types list and
then select "Open" from the "Objects" menu.    This will bring up a window to let you read the note
attached to the race "Human".

Normally, the description of an object is kept in an attached note with the same name.    This lets you find
out about an object without digging through a book or asking the GM.    You can also create and edit notes
which accompany your characters.    Use them to keep records of your characters' backgrounds, histories,
and/or any other tidbits you might want to remember.

Let's create a note to accompany Delgath.    We first need to have Delgath's character manager open.   
Click on "Delgath" in the object list and select "Open" from the "Objects" menu.    Now select "Create
Notes" from the "Character" menu.    The note created will be titled "Delgath".

Put the following in the text window:

"Delgath is a smart, tough but poor young man who makes his money by relieving it from
the more fortunate in as inconspicuous a fashion as possible.    He has not been on good
terms with the local "guild of professionals" since his refusal to join a year ago.   
Overconfident, like many his age, he tends to be a flamboyant showoff although he
abstains from drugs and alcohol.    Only 5'6", he is sensitive about his height which may
account for his fondness for high places. Del has fair skin, dark hair and dark eyes,
weighs 110 lbs and is right handed."

After you're done editing the text you can "Save" the note and close the window.    Let's go back to the
character manager and see how characteristics work.

Next Topic:
Playing with Characteristics

Playing with Characteristics
You may have noticed the button in the top right corner with the text "cost: 0".    In many campaigns you
"buy" characteristics and abilities with experience points.    This button shows the last calculated cost for
the character.    The cost is calculated whenever you open or save the character, choose "Recalculate"
from the "Cost" menu, or press this button.

Going back to Delgath, we can see that he currently doesn't cost any points.    But then, we haven't made
any changes to his characteristics or attributes.    First we'll assign some new values to his characteristics
and get more familiar with the character manager's capabilities.

Each character manager has a box just underneath the race field to contain all the characteristics.    Some
characteristics may be assigned their value.    These have entry fields next to their names.    Other
characteristics are calculated. Their values are updated when the cost is calculated.    Finally there are
random characteristics.    These characteristics are generated when the character is created and then
stay the same until the GM changes them.

OK, let's go back to Del's character manager and see this in action.    As examples of random
characteristics you should look at the Mana and Exp characteristics.    Exp represents the experience
awarded to you by the GM and always starts out at 0.    Mana is the result of rolling a 4-sided die and
subtracting 1.    We will need a mana score that is not 0 in a later section of this tutorial.    If Del has 0
mana, you may wish to delete and recreate him now.

To see how assigned and calculated characteristics work enter 8 into the ST field then press the "cost:"
button.    You'll see that "basic dmg" and "ch cost" have been updated and the button now reads "cost: -
20".

Now try entering 15 into the ST field and 12 in the IT field but don't recalculate the cost.    Then choose
"Undo" from the "Character" menu.    This causes the fields to return to their previous settings.    Any time
"Undo" is chosen, all fields are reset to the value they had just after the last calculation occurred.

Go ahead and enter the rest of Del's characteristics as follows:    ST 8, IT 12, AGL 15.    When you're done
Del's cost should be 60.    Save the changes you've made and we'll proceed to give him some attributes
and possessions.

Next Topic:
Modifying Attributes

Modifying Attributes
A character isn't just a name with some characteristics attached.    There are always going to be specific
abilities, attributes and possessions which uniquely define the character.    The character manager uses
two lists to display a character's attributes and possessions.    These lists work almost identically to each
other to keep track of your modifications.

At the moment, Delgath's attribute list shows "Average Wealth" and the possessions list is empty.   
Choose "Add" from the "Attribute" menu.    This places an entry field at the top of the attributes list.    Type
in "Poor" and press Enter.    Poor will be added to Del's attributes and Average Wealth will disappear.

Average Wealth disappeared because Poor is an indication of wealth and the campaign has been
designed so that a character can't have both attributes.    In fact, the two attributes share the same note,
titled "Wealth".    Now try adding the "Sneak" attribute on your own.

Notice that the Sneak is followed by a 1 in the attributes list.    This is the level that's been assigned to it.   
Unless the attribute's level is calculated, a level of one is automatically assigned to any attribute which
you enter without a following number.    Poor does not show a 1 because it is an "owned" attribute.    You
can't own Poor at a level higher than 1 so there is no reason to display a level for it.    Try adding "Sneak
3" (don't forget the space).    You'll see that Sneak has now been assigned a level of 3.

There is another way you could have changed Sneak's level.    Try selecting Sneak and then typing 15
followed by Enter.    An entry field popped up when you hit 1 didn't it!    Whenever you start typing and one
of the lists boxes has the input focus an entry field will pop up to accept your modifications.    If you enter
only a number, the number is interpreted as a new level for the currently selected entry.

Now try adding "Pick Pockets".    A dialog box will tell you Pick Pockets is restricted to Delgath.    That is
because the campaign requires you to have "Thief's Training" before you can have "Pick Pockets".    So
add "Thief's Training 2" and then add "Pick Pockets".    Since Pick Pockets is a "calculated" attribute, a
level is calculated for Delgath and displayed.    This level will be recalculated every time you calculate
Delgath's cost.

Lets give Delgath some fighting abilities.    Add the two attributes "Short Sword 18" and "Long Sword 16".   
This is fine, but if you look in the objects list you will see that there is an attribute called "Short Sword
[fromLongSword]" which would probably be cheaper for Delgath.    Try entering "Short Sword
[fromLongSword]".    The new attribute replaced "Short Sword" and took on its level.    This is exactly the
same way "Poor" replaced "Average Wealth" and for the same reasons.

Finish entering Delgath's attributes by adding "Blather 13" and "Horseriding 14".    Save your changes and
look at the cost button.    It should read "cost: 66 1/2" if everything is correct.    Now lets give Del some
possessions.

Next Topic:
Adding Possessions

Adding Possessions
Adding and modifying possessions is exactly the same as adding and modifying attributes.    You just use
a different list.    Try adding Del's possessions as follows: "Small Knife", "Short Sword", "Clothes: low
class", "Shoes: pair", "Leather Jacket", "Ring: silver", "Horse [riding]", and "G.S. 11".

After you're done adding possessions, save the changes.    Something went wrong, didn't it?    A message
box popped up telling you that "Poor" was restricted to Delgath.    This is because Del has too much
money (G.S.).    But before we correct this problem, lets explore what exactly is going on.

First look at Delgath's attributes.    You will see that Poor has been removed and Average Wealth is now
there.    Average Wealth was added because Poor was removed and characters must have a wealth
attribute in this campaign.    If we change Delgath's money to "G.S. 100" and then press the cost button,
we get a similar message indicating that Average Wealth is now restricted to Delgath.

But Average Wealth has not been removed from Del's attributes.    This is because the default wealth
attribute for Humans is Average Wealth.    If Delgath had been an Elf, the Poor attribute would never have
disappeared, since Poor is the default wealth attribute for Elves.    Every time Delgath's cost is
recalculated, this message will appear until we change either G.S. to a legal value, or change Del's
wealth attribute to an appropriate one.

Change Del's money to "G.S. 10" and add "Poor" to his attributes again and save the changes.    Delgath
is now a complete character!    But don't close the program yet.    We still should explore how races relate
to characters.    We also have to save our changes to the file on disk.

Next Topic:
A Character's Race

A Character's Race
In the previous sections, we never changed Delgath's race from the default race Human.    Although races
may be unimportant to some campaigns, in many campaigns (including tutorial.cmp) a character's race
affects the cost of characteristics and what attributes the character may have.

To explore how a character's race may affect its manager's actions, let's change Delgath's race to "Elf"
and press the cost button.    You will see that Delgath's cost has dropped by 6 points.    This is due to the
fact that Del's characteristics (particularly AGL) cost less.    However, this cost savings is offset by the fact
that Delgath now has the "Extra Mana" attribute and also the race's cost has been added in.

If Delgath had a Mana score of 0 before you tried to make him an Elf you received a message stating that
he doesn't have the characteristics to be an Elf.    This is because elves are required to have a "base
mana score" of 1 or better.    The base mana score is the value shown in the Mana field when the
character has no levels of the "Extra Mana" attribute.

You'll note that Delgath now has a mana score 2 greater than he did before.    This corresponds to the two
levels in the Extra Mana attribute he was given when his race changed.    The Extra Mana attribute is
required for all Elves, but of course you can change its level.

Do I hear you saying: "Wait a minute!    Mana is a random characteristic.    It shouldn't change until the GM
alters it."    Well... I sort of lied.    You see, the Mana characteristic displayed on the screen is actually a
calculated characteristic that gets its level by adding a character's Extra Mana to "baseMana", a random
characteristic that is hidden from view.    In effect, Mana is a random characteristic that takes into account
the "bonus levels" from a character's Extra Mana.

To see more clearly the differences between a Human character and an Elf character you can look at the
default settings for each race.    Choose "Def Characteristics"    from the "Character" menu.    Then choose
"Def Attributes".

Choosing "Def Characteristics" sets a character's characteristic values to their default, racial values.   
Similarly, choosing "Def Attributes" removes all attributes but those required and sets them to their
default, racial levels.    If you now press the cost button you will see that a new Elf character initially costs
24 points, a bit more than the 0 points used by a new Human character.

Close Delgath without saving the changes we've made.    Press the Abandon button when the
confirmation dialog pops up.    We will now complete the tutorial by saving our changes to disk.

Next Topic:
Saving changes to the campaign

Saving changes to the campaign
We're done building the sample character.    Now its time to save our changes to disk. The previous times
we selected "Save" in the character manager, we were saving our changes to memory.    The file on disk
still contains the original campaign without our modifications.

Before I go on to tell you how to save your changes to disk, let me remind you that Delgath didn't exist
when you started this tutorial.    It would be unfair of you to save him to disk.    Other people might get
confused if they go through this tutorial and find Del already in the objects list.    This can be particularly
frustrating when they discover they can't access anything but Delgath's notes because they are not the
GM or Delgath's player!    So, if you just finished the tutorial, you should either delete or rename the
sample character before proceeding to save the changes to disk.    To delete Delgath from memory,
activate the main window, select "Delgath" and choose "Delete" from the "Objects" menu.

To save the characters you build to the disk, as part of the campaign you loaded, activate the main
window and choose "Save" from the "Campaign" menu.    Make sure you've saved the character to
memory first.    The best way to make sure of this is never to save the campaign while other object
managers are open.

You've now learned the basics of using CampMan to build characters.    If you are a GM you should go on
to the next tutorial Building A Campaign.    Thanks for trying out the program and I hope you enjoy using it.

Building A Campaign
This chapter guides you through the creation of the tutorial campaign provided with Campaign Manager
for Windows.    Since the tutorial campaign was also used in the first tutorial, you may find it insightful to
read through Building A Character before reading this chapter.

This tutorial assumes you are familiar with the Windows operating environment.    In particular you should
know how to move/size/close a window, enter/modify text, use a menu and click on a button or list item.   
If you are not familiar with Windows you should first go through the Getting Started with Microsoft
Windows manual and the Windows tutorial.

Included Topics:
Creating a New Campaign
The Simplest Objects, Items
Working with Notes
Before Adding Characteristics
Adding Characteristics
Modifying the Human Race
Adding Attributes
Adding Attribute Lists
Creating an Alternate Race

Creating a New Campaign
If you haven't done so already, start the program in GM Access mode.    For more information, see
Starting the Program.

The first window you will see after the startup dialogs is the main window, the campaign manager, after
which the program is named.    It presents you with a    list of object names and types in the open
campaign as well as a special list for the characteristics.

To create a new, empty campaign you must choose "New" from the "Campaign" menu.    This will empty
all the lists except for the object names list, which will contain one name.    "Human" is the name of the
default race, the only object in an empty campaign.

Before we go any further, we should save the new campaign to a file.    Choose "Save As..." from the
"Campaign" menu.    This brings up a dialog box to let you specify what file you want to use.    Type
"practice.cmp" into the file name entry field and press OK.    From now on, we will periodically save our
changes to disk so that we won't loose all our work if we make a mistake or the computer crashes.

Next Topic:
The Simplest Objects, Items

The Simplest Objects, Items
Although items are probably the last objects you will create for your own campaign, they serve as a good
object to look at first.    Items are the simplest objects you can create.    They aren't much more than a
name to which you can attach descriptions.

To create a new object, you use the "Create" sub-menu located on the "Objects" menu from the main
window's menu bar.    Select the object type you want to create from this sub-menu, in this case "Item".    A
new item will be created and its item manager opened.

The item manager has two entry fields.    One, labeled "name", is simply used to give the object a name.   
The other is a multi-line entry field labeled "attached notes".    This field is used to display/modify the text
part of the item's attached note.    An object's attached note can be used to hold the object's description.   
It is important that you have a description for each object you create, since the description is the only
thing your players will be able to see in Player Access mode.

More on notes later.    For now, just enter "G.S." into the name field and enter "Gold Sovereign (G.S.)           
The basic unit of monetary wealth." as the description.    Then choose "Save" from the "Item" menu.   
Notice when you saved the item, the item manager's title changed to reflect the new name.    The main
window's objects list was updated as well.

Once an object has been saved, you can reopen its manager using the main window.    First select the
object's name and type from the appropriate lists and then choose "Open" from the "Objects" menu.    Go
ahead and practice creating/saving objects by creating the rest of the items needed by the tutorial
campaign: "Clothes: low class", "Horse [riding]", "Leather Jacket", "Ring: silver", "Shoes: pair", "Short
Sword", "Small Knife".    Feel free to use whatever descriptions you wish.

Next Topic:
Working with Notes

Working with Notes
Keeping good notes, as any experienced GM will tell you, is very important.    Even more important is
keeping those notes closely associated with their subject matter.    Campaign Manager helps you do this
by letting you create both unattached and attached notes.

subtopics:
Two Unattached Notes
Using Attached Notes
Regarding Attached GM Notes

Next Topic:
Before Adding Characteristics

Two Unattached Notes
Unattached notes are created in the normal fashion for creating objects, by selecting "Note" from the
"Create" sub-menu.    This creates a new note and opens its manager which has three entry fields.    The
use for the title and text entry fields should be obvious.

The topics field is used to give a list of subjects that the note touches on. Each subject should be
separated from the others by a comma.    The topics field is important in helping search for notes on
related subjects.    For more information see The Note Search Dialog.

The tutorial campaign has two unattached notes -- "Cost of Basic Characteristics" and "Cost of Abilities".   
Lets create two notes with those titles.    Enter "Characteristics, Cost" and "Ability, Cost" into the
appropriate topics fields.    Then enter the following text for the first note:

"There are three basic characteristics:

Strength (ST), Intelligence (IT), and Agility (AGL)

The cost for any of these characteristics is based on the difference between the assigned
value and the default value. (i.e. difference between a character's ST and its race's ST)
difference cost difference cost

< -7 -80       0         0
      -7 -70       1     10
      -6 -60       2     20
      -5 -50       3     30
      -4 -40       4     45
      -3 -30       5     60
      -2 -20       6     80
      -1 -10       7 100

20 additional cost each point difference after 7"

And enter the following text for the second note:

"The cost for any given level for an ability is calculated from the difference between the
levels you have with the ability and a base characteristic/attribute defined differently for
each attribute.

Each ability may also have a modifier used to shift the cost to indicate more
expensive/cheaper abilities.
difference cost

<    0       0
        0 1/2
        1       1
        2       2
        3       4
        4       8
        5 12
        6 16

4 additional cost each point difference after 6"

When you're done, save both notes and close their managers.    We will refer to these two tables later
when creating characteristics and attributes.

You may have noticed when you created the above notes that "GM Note" is also listed in the "Create"

sub-menu.    GM notes are exactly like other notes except that they can't be viewed in Player Access
mode.    Thus you can create both public notes (Notes) and private notes (GM Notes).    The tutorial
campaign does not have any GM notes.

next subtopic:
Using Attached Notes

Using Attached Notes
Unattached notes are useful, but in the real world it would get kind of messy if all your notes were kept on
loose sheets without any order.    Of course, that's one reason for the topics field, to let you group your
notes.    But you usually keep notes about characters on the same sheet as the character ... or on
attached sheets.    So Campaign Manager also has attached notes.

Attached notes are note objects that are associated with a specific non-note object.    There are several
ways to create an attached note, but perhaps the most direct is to choose "Create Notes" from the first
menu on an object manager's menu bar (i.e. the "Item" menu for item managers).    This creates a new
note attached to the edited object.

Attached notes usually have a title exactly the same as the name of the attached object.    But there is
nothing to prevent you from changing the title of any note.    Attached notes are not listed in the main
window's object list, to open them you must first open the attached object.    Then you can choose "Open
Notes" from the object manager's first menu.

For example, reopen the "G.S." item and select "Open Notes" from the "Item" menu.    A note manager will
come up with the note attached to G.S.    You can see that the attached note's title is also "G.S." and that
the text is exactly the same text we placed in the item manager's attached notes field.    However, the
topics field is empty.

The item manager is unique among object managers in that it has this "attached notes field" which can be
used to modify its attached notes.    All other object managers must have their attached notes specifically
created/opened.

next subtopic:
Regarding Attached GM Notes

Regarding Attached GM Notes
I mentioned above that attached notes are only attached to non-note objects.    But there may be times
when you want to create private "side notes" about some public note.    These are called attached GM
notes.

Like unattached GM notes, attached GM notes can't be viewed in Player Access mode.    But, GM notes
can only be attached to note objects.    To create an attached GM note, simply choose "Create GM Notes"
from the "Note" menu of a note manager.

Next Topic:
Before Adding Characteristics

Before Adding Characteristics
So far we've created objects which don't cost a character any experience to own.    Before we do, there
are a few considerations to be made.    Choose "Campaign" from the "Configuration" menu.    This brings
up a dialog box used to set particular aspects of how the creature, race, and character managers look
and behave.

Right now we're interested in the lower left section titled "Race costs added ...".    This section has two
check boxes to indicate which racial costs should be added to characters.    It is important to decide which
costs will be added to characters before we actually start creating those costs.    Although there is nothing
to prevent you from changing these settings later, if you change these settings in a campaign which was
designed for different ones, character costs may become artificially inflated or deflated.

The tutorial campaign is designed to add racial costs for both characteristics and attributes to characters. 
Make sure both of these check boxes are checked and press OK.

Next Topic:
Adding Characteristics

Adding Characteristics
It's time to add the characteristics to the tutorial campaign.    Before continuing, you might want to save
the campaign's changes thus far.    To do so, simply choose "Save" from the "Campaign" menu.    Then
create a new characteristic.

In addition to the name field, characteristic managers have a combo box and an equation entry field.   
The combo box is used to set the characteristic's type.    If you change the type, you will see that the title
of the equation entry field changes to reflect what the entered equation is intended to calculate.

Assigned characteristics have their level assigned by the character's creator.    They also have an
associated cost for that level (otherwise everyone would have 18's).    The cost for an assigned
characteristic is determined by its cost equation.

Enter "ST" as the new characteristic's name, make sure that "assigned" is selected in the combo box, and
save the changes.    Then choose "Edit" from the "Equation" menu.    This brings up an Equation Editor
which will allow us to derive a cost equation for the strength characteristic.

subtopics:
Deriving Strength's Cost
Defining Functions
Two Calculated Characteristics
Two Random Characteristics

Next Topic:
Modifying the Human Race

Deriving Strength's Cost
Since strength's cost is based on the difference between a character's strength and its race's strength lets
start by creating an equation that calculates this difference.    Enter "ST - @race:ST" into the multi-line
entry field, then press the "Evaluate" button.   

Several things will occur when you press Evaluate.    First, the list box titled variables will be updated to
include the strings "ST{0}" and "@race:ST{0}".    Also the value entry field will now show a 0.

"ST" and "@race:ST" are called variables.    Variables act as place holders for numbers which will be
inserted when the equation is evaluated.    If this equation were evaluated for a character, the character's
strength level would replace the "ST" variable and the character race's strength level would replace the
"@race:ST" variable.    For a complete discussion on the uses of variables in CampMan see Variables.

The equation editor allows you to set test values for each variable in an equation and see what the
equation's result will be with those settings.    The current test value assigned to a variable is displayed in
the brackets after its name in the variables list.    As you can see, ST and @race:ST are both currently
assigned a value of 0.    The equation's result (zero minus zero) is displayed in the value field.

To change a variable's test value, select the variable's name in the variables list.    When a variable is
selected, the value field changes to reflect the currently assigned test value.    Type in a new value and
then click in some other entry field.    When the value field looses focus, it converts the entered text to a
number and assigns the result to be the selected variable's new test value.    You can continue doing this
until you've changed all the test values you wish, then press the Evaluate button again to see the new
result.    If no variable is selected, the value field displays the result of evaluating the edited equation with
the test values.

Looking at the cost table for basic characteristics, we can see that eventually the cost will increase in
increments of 20 points.    To simulate this in the equation, enter "20 * (ST - @race:ST - 2)" as the
equation's text and press Evaluate.    When you pressed evaluate, the equation changed.    Whenever you
press evaluate, the equation editor tries to convert the entered text into an equation.    The result will be
an equation which is equivalent to the entered equation, but possibly has been rearranged or simplified to
conserve memory.

If there is a problem with the text you entered that prevents the equation from properly being interpreted,
a description of the problem is displayed in the value field.    This is called a compilation error.    For a
complete discussion of these errors see Compilation Errors.

Lets keep the test value for @race:ST set to 0, and set the test value for ST to various values as we
refine our equation.    If we evaluate the equation for various test values between 7 and -8 we can see that
the equation at the moment always evaluates to a value that is too low for differences less than 5.    To
correct the problem let's try using the max() internal function.    The max() function answers the largest
value among its arguments (separated by commas).    For more information see Functions.

Modify the equation so that it reads:

"max(20 * (ST - (2 + @race:ST)), 15 * (ST - @race:ST - 1))"

and evaluate the equation.    Further testing shows that this only partially solves our problem.    The
equation still evaluates to a value which is too low for differences less than 3.    So we shall modify the
equation once more:

    "max(15*(ST - (1 + @race:ST)), 20*(ST - (2 + @race:ST)), 10*(ST - @race:ST))"

Complete testing of this equation reveals that we have finally created an equation that properly evaluates
to the cost of the strength characteristic.    Press the "Done" button.    The equation dialog will close and
our new equation will be inserted into the cost field for the ST characteristic.    Now save the changes to
the ST characteristic.

For a full explanation about equations and the equation dialog see Equations.

next subtopic:
Defining Functions

Defining Functions
There are two other basic characteristics that are part of the tutorial campaign.    To create correct cost
equations for them we could just copy the cost equation we used for strength, replacing the variables to
reflect the new characteristics.    But it would be easier if we could define a function that takes the
difference as a single value and returns the appropriate cost.    Then we could simply use the one function
... three times.

To define a function we first must choose "Functions..." from the "Campaign" menu on the main window's
menu bar.    This opens a dialog box used to manage the functions defined in the current campaign.    It
looks and behaves very similar to an equation editor.

To define our function we will use the same equation that we used for strength's cost, but we will replace
each "ST - @race:ST" with "arg1".    Enter

"max(-80, 10 * arg1, 15 * (arg1 - 1), 20 * (arg1 - 2))"

into the multi-line entry field and press the Evaluate button.    Just like the equation editor, the function
editor updates a list of variables (called arguments this time) and the value field.    If you test this equation,
you will see that as arg1 changes for -8 to 7, the answered value correctly changes from -80 to 100.   
Note that we've added a
-80 to the beginning of the arguments to the max() equation.    This prevents the equation form returning
values below -80.

Press the Save button and enter "BasicCharCost" when you are prompted for the function's name.    Now
close the function dialog and reopen the equation dialog for strength's cost equation.

Replace the old equation's text with "BasicCharCost(ST - @race:ST)" and press evaluate.    Go ahead
and convince yourself that this equation works properly and then press Done.    Finally, save the changes
to the ST characteristic.

Now we can easily add the two other characteristics to our campaign.    Create two characteristics with the
names "IT" and "AGL".    Make sure both are of type "assigned".    Finally, enter "BasicCharCost(IT -
@race:IT)" into the cost field for the IT characteristic and enter "BasicCharCost(AGL - @race:AGL)" into
the cost field for the AGL characteristic.    Now save the changes for both characteristics and we'll add the
remaining calculated and random characteristics to our campaign.

For a full explanation of functions and the function editor see Functions.

next subtopic:
Two Calculated Characteristics

Two Calculated Characteristics
In addition to the three basic characteristics, the tutorial campaign also has two calculated characteristics. 
The "ch cost" characteristic is supposed to have a level equal to the cost of the three assigned
characteristics.    To add this, simply create a characteristic named "ch cost", select "calculated" in the
type combo box and enter the following equation into the level field...

        "BasicCharCost(ST - @race:ST) + BasicCharCost(IT - @race:IT) + BasicCharCost(AGL -
@race:AGL)"

The other calculated characteristic is called "basic dmg" and is supposed to display a dice expression
which represents the character's damage with his bare fists/feet.    This is a fifth of the character's strength
in six-sided dice plus the remainder expressed as a modifier.    To add this to our campaign we should first
create a function that calculates the remainder of a division.    Simply open the function dialog, enter the
equation "arg1 - arg2 * floor(arg1 / arg2)" and save it under the name "remain".

Now we can create a calculated characteristic named "basic dmg" with a level equation that looks like
this:

"floor(ST / 5) d6 + remain(ST, 5) - 1"

Save your changes and then we'll add the remaining two random characteristics.

next subtopic:
Two Random Characteristics

Two Random Characteristics
The tutorial campaign has two random characteristics: "Mana" and "Exp".    Random characteristics
generate an initial level for characters when they are created and stay at that initial level until changed by
you in GM Access mode.

A character's Mana is initially determined with a roll of a 4-sided die and subtracting one from the result.   
We indicate this with the dice expression "1d4 - 1" placed in the characteristic's "init level" equation field.   
Unlike other equations, when the init level equation is evaluated any dice encountered are rolled
(replaced with random numbers between 1 and the number of sides).

The Exp characteristic is used to represent the experience you've awarded a character.    Of course, this
is not a "randomly generated" characteristic, but only the GM is supposed to change it.    So you should
create a random characteristic with an initial level of "0".

Don't forget to save your changes.    Also, be fair to the players, create attached notes describing each of
the campaign's characteristics.

When you want to change a character's random characteristics you must check the "Edit Random (gm)"
check box in the Program Configuration dialog.    When this feature is enabled, character managers
display random characteristics in entry    fields to allow you to change and save their settings.

Next Topic:
Modifying the Human Race

Modifying the Human Race
Now that we have the campaign's characteristics squared away, we should set the basic characteristic
values for the Human race.    Open Human's race manager.    You will see that all the assigned
characteristics have been set to 0.    We'd like to set ST, IQ, and AGL to 10.    Just enter 10 into the three
entry fields next to the characteristic names and save your changes.    Then close the race manager.

The characteristics in the race manager you just closed were listed in a single column and may have
been out of order.    When a new characteristic is saved, it is placed at the end of the characteristic list.   
But it is possible to reorder the list of characteristics.

The order characteristics are listed in is controlled by the "characteristics" list in the main window.    This
list box is specially designed to allow its contents to be reordered.    Simply click and hold the middle
mouse button on the name you wish to move.    Then drag the indicator to a new position and release the
mouse button.

You may also want to change the number of rows/columns the characteristics are listed in.    This is
controlled by the "Characteristics" section of the Campaign Configuration dialog.    Simply enter the
number of rows/columns you wish to use.    The dimension not specified is free to change as needed to
list all the characteristics.

Take a moment here to save the campaign.    We don't want to loose all our work so far.

Next Topic:
Adding Attributes

Adding Attributes
The tutorial campaign contains quite a few attributes.    Attributes are kind of like characteristics, but not all
character's are intended to own any single attribute.    Attributes can be used to represent a character's
advantages, disadvantages, abilities, skills, super powers, etc.

Some of the attributes to be added are what we'll call "abilities".    Each is used to represent the level of
skill a character has with some learned ability.    They all will share a common way to calculate their costs
defined in the "Cost of Abilities" note we created earlier.

Because the process for determining an ability's cost is common to all abilities, we will want to define a
function, "AbilityCost", which simulates this process.    By following a procedure similar to the one we used
in deriving the BasicCharCost function, we find that a function defined as follows fits our needs:

"max((arg1 = 0) / 2, arg1, 4 * (arg1 - 2))"

Simply open the function dialog and define the above equation as the AbilityCost function.

Create a new attribute.    When the attribute manager opens, you will see that attributes come in three
flavors: assigned, calculated and owned.    All attributes have a cost equation used to define the cost for a
character to own the attribute.

Every attribute also has a second equation.    For calculated attributes, the second equation calculates the
attribute's level for a given character.    For assigned attributes, this second equation is used to define the
maximum level that may be assigned to the attribute for a given character.    A character may only have a
level of 1 or 0 with any owned attribute so this second equation is only used to determine if a character
may own an owned attribute.

In all cases, if this second equation answers 0 for a given character, the attribute is considered restricted
to that character.    If the maximum level for an assigned attribute is -1 for a given character, the attribute's
level is considered to have no upper limit for the that character.

Lets name the new attribute "Horseriding".    This attribute will be assigned, and will indicate a character's
level of skill at riding horses.    The cost will be based on the character's agility as follows:
"AbilityCost(Horseriding - AGL)".    The maximum level is indicated by "-@character".    This second
equation answer 0 for races and -1 for characters.    We restrict the attribute from races because the cost
equation does not properly take into account the possibility that a character's race also has this ability.

Save Horseriding and then choose "Copy" from the "Attribute" menu.    This creates a new attribute with
properties copied from Horseriding.    This greatly simplifies the work required to create similar attributes.   
Name the new attribute "Sneak" and change the cost equation to "AbilityCost(1 + Sneak - AGL)".    The
additional 1 makes this ability's levels more expensive than the average ability.

After saving the changes copy Sneak and name the new attribute "Blather".    This attribute will be based
on intelligence not agility.    Change the cost equation to "AbilityCost(Blather - IT - 1)".    The subtraction of
1 here indicates that the ability's levels will be less expensive than the average ability.

Copy Blather and name the new attribute "Thief's Training".    This attribute is not considered an ability
and does not use the AbilityCost function.    Rather it is used to indicate general knowledge which will
affect the level of another attribute we will create.    Change the cost to "5 * Thief's Training".    This will
give the attribute a cost of 5 for each level assigned.

After saving Thief's Training, create a new characteristic and name it "Pick Pockets".    This will represent
the common thief ability to pick pockets undetected.    It is a calculated attribute which will be restricted to
all character's that do not have the Thief's Training attribute.    Its cost will be "2" for all characters, simply
enter a 2 in the cost field.    Then enter

"boolean(Thief's Training) * trunc(Thief's Training + (AGL + IT) / 2)"

into the level field.    This equation answers 0 if the character does not own Thief's Training.    If the
character owns Thief's Training, the equation answers the sum of the character's Thief's Training level

with the average of the character's agility level and intelligence level truncated to an integer.

Don't forget to create attached notes for each of these attributes so that players can find out exactly what
they represent and how they interrelate.

Next Topic:
Adding Attribute Lists

Adding Attribute Lists
An Attribute List is a group of attributes, only one of which may be owned by a character at any given
time.    Such an object has several uses, some of which are demonstrated in the tutorial campaign.    The
first example of an attribute list is the group of wealth attributes.

subtopics:
The Wealth Attributes
Two Weapon Abilities

Next Topic:
Creating an Alternate Race

The Wealth Attributes
We would like to create an attribute which reflects a character's poverty or affluence.    We could create a
single attribute called "Wealth" with several numbered levels, but it would be nicer if we could name these
levels: "Poor", "Average Wealth", "Rich", and "Filthy Rich".    In fact we can do something similar by
creating an attribute list with four attributes.

Create an attribute list and enter "Average Wealth" when prompted for the name of the first member.   
This is required, since an attribute list can't exist without at least one member attribute.    Attribute lists do
not have a name per say.    If and when a name is needed to identify an attribute list, the title of the
attached note is used or one of the member names is used if no note is attached.

The attribute list manager looks and acts like an attribute manager except for the name field, which has
been replaced by a member combo box.    The current name displayed in the member    field indicates
which attribute's properties are being displayed/modified in the other fields.    At the moment, the "Average
Wealth" attribute is being edited.

Create an attached note for the attribute list titled "Wealth", with topics "Wealth, Money", and the following
text:

"The Wealth attributes indicate how rich or poor your character is monetarily.    The
following table indicates the cost & limitations of each wealth attribute.
attribute cost maximum wealth
 Poor -10       10 gold sovereigns
 Average
Wealth

        0       50 gold sovereigns

 Rich     15 200 gold sovereigns
 Filthy Rich     25           no upper limit"

This note will be used by all member attributes.    When a character tries to open any of the member
attributes while in Player Access mode, this note will be opened.

Make sure that Average Wealth is "owned" and enter "G.S. <= 50" into the level equation field.    This
equation will either answer 0 or 1 depending on the amount of money the character has.    The cost of this
attribute will be 0, but since we are allowing races to own this attribute, we must add/subtract    any
different wealth costs associated with the character's race.    So enter

"10 * @race:Poor + -15 * @race:Rich + -25 * @race:Filthy Rich"

into the cost field for Average Wealth.    Save the changes to Average Wealth and then choose "New" from
the "Attribute" menu.    Enter "Poor" as the new attribute's name.    Enter "G.S. <= 10" as the new level
equation and

"-10 * not(@race:Poor) + -15 * @race:Rich + -25 * @race:Filthy Rich"

as the new cost equation.    The not() function in the above equation prevents a character from getting an
extra -10 cost if its race is already poor.    Save the changes and add a new member named "Rich".    This
time enter "G.S. <= 200" in the level field and enter

"10 * @race:Poor + 15 * not(@race:Rich) + -25 * @race:Filthy Rich"

as Rich's cost equation.    Finally, add "Filthy Rich" to the attribute list.    Put "1" in the level field and

"10 * @race:Poor + -15 * @race:Rich + -25 * not(@race:Filthy Rich)"

in the cost field.    Make sure all these attributes are "owned" and save your changes.    Now whenever a
user adds one of these attributes to his character, any other wealth attribute the character already owns
will be removed before the new one is added.

Wouldn't it be nice if we could force every character to own one of these attributes?    Then there would be
a system in place which forces a character with a huge amount of money to pay the experience points

necessary to raise his level of wealth.    There is a way to do this.    We simply need to add the "Average
Wealth" attribute to the default race (in this case "Human"),

Open Human's race manager and choose "Add" from the "Attributes" menu.    Then enter "Average
Wealth" into the entry field that pops up in the attributes list.    Press return to accept your entry, then save
the changes to the Human race.    Now any player that removes the current wealth attribute from his
character will cause Average Wealth to be added to his character.

Take a moment here to save the campaign.    We don't want to loose all our work so far.

next subtopic:
Two Weapon Abilities

Two Weapon Abilities
We would like to create two abilities, "Short Sword" and "Long Sword" which indicate a character's level of
skill at wielding those weapons.    Both abilities will have their costs based on the character's agility.    But
we want to take into account the possibility that a character's skill at wielding one of these weapons might
be helped (made cheaper in cost) by his skill at wielding the other weapon.    We will do this by creating
two attribute lists.

Create an attribute list with "Short Sword" as the first attribute.    Make sure the attribute is "assigned" and
enter "-@character" into the max level field and "AbilityCost(Short Sword - AGL)" into the cost field.   
Save your changes.

Similarly, create a second attribute list with "Long Sword" as the first attribute.    Make sure it is "assigned",
enter "-@character" into the max level field and enter "AbilityCost(Long Sword - AGL)" into the cost field.   
Save your changes.

We have two attributes based on a character's agility.    We will now add one more member attribute to
each list which will reflect the possibility that one of the abilities is actually based on the other. Add a
member to the list containing "Short Sword" called "Short Sword [fromLongSword]".    Similarly, add a
member to the list containing "Long Sword" called "Long Sword [fromShortSword]".

Since it is illogical for a character to own both of these attributes at one time, we will restrict each of these
attributes to character's which own the other attribute.    Also, we will restrict a character from owning
"Short Sword [fromLongSword]" at a level lower than "Long Sword" and similarly for "Long Sword
[fromShortSword]" at a level lower than "Short Sword".    Enter

"-not(Short Sword [fromLongSword] | (@list:Long Sword > @list:Short Sword)"

into the max level field for "Long Sword [fromShortSword]".    This equation answers -1 if the character
does not own "Short Sword [fromLongSword]" and his level with "Short Sword" is less than his level with
"Long Sword [fromShortSword]" or his level with "Long Sword" (whichever of the two attributes he owns). 
Otherwise it answers 0.    Now enter

"-not(Long Sword [fromShortSword] | (@list:Short Sword > @list:Long Sword)"

into the max level field for "Short Sword [fromLongSword]".

Finally we can enter "AbilityCost(Long Sword [fromShortSword] - Short Sword)" and "AbilityCost(Short
Sword [fromLongSword] - Long Sword)" into the appropriate cost fields.    Save the changes for both
attribute lists.

We now have four attributes in two attribute lists which can be used to represent any of the following:

· A character's skill at wielding the short sword

· A character's skill at wielding the long sword

· A character's skill at wielding the short sword
(based upon the character's skill at wielding the long sword)

· A character's skill at wielding the long sword
(based upon the character's skill at wielding the short sword)

Next Topic:
Creating an Alternate Race

Creating an Alternate Race
Now that we have completed most of the tutorial campaign, it might be nice to give players a choice of
races for their characters.    Lets create a race called "Elf".    Elves will be somewhat weaker than Humans,
but more intelligent and much more agile.    Also, the average Elf will be poorer than the average Human.

Create a new race and name it "Elf".    Enter 9 in the ST field, 11 in the IT field and 13 into the AGL field.   
Then add "Poor" to its attributes and save the changes.    Note that the cost field now reads "cost: 20".   
This is because a Human character with these characteristics and attributes would cost 20.

Elves are often considered somewhat magical in nature, and it would be nice if we could somehow
indicate that the average Elf has more Mana than the average Human without changing Mana into an
assigned characteristic.    We can do this, but first we must create an attribute and use its level when
calculating the Mana characteristic.

Create a new attribute called "Extra Mana".    Make sure it is "assigned" and then enter "2 * (Extra Mana -
@race:Extra Mana)" into the cost field.    Now we need to address the fact that the current Mana
characteristic is random.    We will circumvent this by renaming the random characteristic as "baseMana"
and then creating a new, calculated Mana characteristic that adds a character's baseMana and Extra
Mana levels together.

First open the current Mana characteristic manager, enter "baseMana" into its name field and save it.   
Answer yes when asked about renaming the characteristic.    Then create a new calculated characteristic
with "baseMana + Extra Mana" as its level equation and name it "Mana".

Save all your changes, close and reopen Elf's manager so that the characteristic changes can be
reflected in its display/entry fields and then add "Extra Mana 2" to its attributes list.    Now all Elf
characters will automatically get 2 extra mana points at the cost of 4 experience points.

We'd like to restrict characters with a base mana of 0 from becoming elves.    This can be done by
assigning 1 to the Elf's baseMana level.    Races use their random characteristic levels as "minimum
requirements".    To assign a character to a new race, each of its random characteristics must meet or
exceed    the level assigned to the new race's random characteristics.    For this reason, Race managers
always display random characteristics in entry fields to allow you to assign and save their values.

Finally, we would like to "hide" the baseMana characteristic since it is somewhat annoying and rather
extraneous information.    We can do this by selecting "baseMana" in the main window's "characteristics"
list and choosing "Hide" from the "Characteristics" menu.    The "baseMana" characteristic will be listed in
gray text and will no longer be displayed in creature, race or character managers.

Save the changes to Elf and we're done.   

Believe it or not, we are done creating the tutorial campaign!    Save everything to disk.    To make sure
everything was entered correctly and to convince yourself this campaign works, you might want to go
through the Building A Character tutorial using this campaign instead of the one supplied with the
program.

I realize you probably still have quite a few questions about how everything works.    That is what the
Reference part of this manual is for, to answer your questions.    But, whether or not you think so,    you
probably could come up with a decent campaign with just a bit of logic and using the tutorial campaign as
a guide.

Go ahead and contact me on Compuserve, if there are any real tough problems you run into.    But try to
use the reference for the basics, OK?    Thank you for trying out the program, and I    hope you have a fun
time using it.    Good Luck <g>.

Command Line Parameters
Although you can easily access all of the program features without the use of command line parameters,
you may get tired of typing the necessary information into all the startup dialogs.    You may use any of
these parameters on the command line to modify the startup behavior of CampMan.

Command line format:

campman.exe [[d:] [path] filename] [/P[name] | /G] [/A]

Parameter Action
d:                          drive, path and
path                                Campaign file
filename

The program tries to load the given
campaign file after the startup
dialogs.

/P                        Startup with player
access
/Pname

The program enters the given name
for you and disables the ability to
enter GM as the player name.

/G                        Startup with GM
access

The program is placed in GM access
mode and the player name dialog is
bypassed.

/A                        Auto OK Automatically presses the OK button
in the startup dialogs.    In most
cases the dialog will simply not
appear.

See the documentation on Program Manager (or your replacement) on how to add these command line
parameters to CampMan's icon.

EXAMPLE:    to automatically load the "tutorial" campaign use

campman.exe tutorial.cmp

EXAMPLE:    to disable the ability to enter "GM" as the player name and thereby disable the
ability to enter GM Access mode use

campman.exe tutorial.cmp /p

EXAMPLE:    to automatically enter "John" as the player bypassing the player name dialog use

campman.exe tutorial.cmp /pJohn /a

EXAMPLE:    to    startup in GM Access mode bypassing the player name dialog use

campman.exe tutorial.cmp /g

EXAMPLE:    if the current program password is empty you can startup in GM Access mode,
bypassing the player name dialog and the password dialog, by using

campman.exe tutorial.cmp /g /a

Player vs. GM Access
GM Access mode gives full access to all the features the program has to offer.    With GM Access you can
create/modify any object, configure the program and change password settings.

Player Access mode is intended to be used to create/modify characters without the ability to create/modify
other objects.    With Player Access you may load a campaign from disk, create/modify your characters
and their attached notes and save those changes to the campaign.    You may also read, but not change,
notes that are not attached to your characters.    You may not view/modify other objects or GM Notes
although all objects other than GM Notes will be listed in the main window.

Related Topics:
Passwords

Passwords
A password is usually required to start the program in GM Access mode.    This password is called the
program password.    The program password is stored in the WIN.INI file using a coded format to make it
hard to read.    The program password is intended to be a nuisance to unauthorized access, not a
foolproof deterrent.    As long as the campaign(s) you create are only used on your computer, a program
password should be sufficient security.    If you plan to distribute your campaign to other users (i.e. your
players) but don't want them to have full access to your file, use a campaign password.

Each campaign may also be assigned a campaign password.    A campaign password is stored in the file
along with the campaign.    To successfully load a campaign while CampMan is running in GM Access
mode, you must first correctly enter the campaign's password if it has one.    Since this password is stored
in binary form as part of the campaign's file, it is next to impossible to determine the password from the
file itself unless you know the file structure.

USE CAMPAIGN PASSWORDS Sparingly and keep good records of the passwords you set because
there is nothing I can do to help you if you forget a campaign's password.    Without a campaign's
password, you might as well scrap that file and build a new one.

Equations
Equations are the "rules" that CampMan follows.    They specify costs, calculated levels and maximum
levels for races and characters.    Equations consist of one or more operands separated by operators.    An
operand may be a number, a variable or a function.

Equations are entered as text into appropriate entry fields (i.e. the cost field for characteristics) but are not
compiled until the object is saved.    After the equation is compiled, it may not look the same since the
compiler simplifies certain expressions to save memory.    But rest assured that the compiled equation
evaluates to the same value as the original expression.

To check that an equation will compile without errors simply click in the equation's entry field and choose
"Check" from the "Equation" menu.    If you are not sure if a field is supposed to contain an equation, click
in the field and then look at the "Equation" menu.    If all the items in the menu are disabled (grayed), then
the field is not used for an equation.

Equations can be a difficult aspect of the program to learn.    You may want to spend some time playing
with the Equation Editor to get a feel for how operators, variables and functions work.

Related Topics:
Operators
Variables
Functions
The Equation Editor
Compilation Errors
Evaluation Errors

Operators
Operators are the actions to be taken with the numbers in an equation.    For instance, + is the operator
that adds two numbers together.

The following operators are currently supported in CampMan:
Operator Syntax Name /Action

() (expression) surrounding parenthesis /evaluates expression first

d dice d sides dice separator /creates a dice expression

- (unary) - expression negation /evaluate 0 - expression
~ (unary) ~ expression boolean negation /evaluate 1 - boolean(expression)

^ base ^ exponent power /raise base to exponent's power

* op1 * op2 multiplication /multiply op1 by op2
/ op1 / op2 division /divide op1 by op2

+ op1 + op2 addition /add op1 and op2
- op1 - op2 subtraction /subtract op2 from op1

= op1 = op2 equal to /evaluate ~(op1 - op2)
< op1 < op2 greater than /evaluate boolean(max(op2 - op1, 0))
<= op1 <= op2 greater or equal to /evaluate (op1 < op2) | (op1 = op2)

& op1 & op2 boolean and /evaluate of boolean(op1 * op2)

~& op1 ~& op2 boolean nand /evaluate of ~(op1 * op2)

| op1 | op2 boolean or /evaluate of boolean(op1 + op2)

~| op1 ~| op2 boolean nor /evaluate of ~(op1 + op2)

Given any two operators separated be one or more lines in the above table, the one which occurs in the

highest position is evaluated first.
If two operators are not separated by a line, then the operator that occurs first in the equation is evaluated
first.

EXAMPLE:    In equation (a) the / operator is evaluated before the + operator.
In equation (b) the expression surrounded by parentheses is evaluated before the /
operator.

(a)    1 + 2 / 3    evaluates to 1

(b)    (1 + 2) / 3    evaluates to 1

EXAMPLE:    In equation (c) the * operator is evaluated first followed by the - operator and finally
the + operator.
In equation (d) the expression surrounded by parentheses is evaluated first, thus the
* operator is evaluated first followed by the + operator and finally the - operator.

(c)    1 - 2 + 3 * 4    evaluates to 11

(d)    1 - (2 + 3 * 4) evaluates to -13

subtopic:
The Dice Operator and Dice Expressions

Related Topics:
Variables
Functions

The Dice Operator and Dice Expressions
Campaign Manager has the ability to create dice expressions using the "dice" operator.    Such
expressions may be used in any equation or function.

In any equation other than a random characteristic's level equation, a dice expression will simply
propagate through the calculation.    An accidental use of a dice expression in a cost equation will cause
the cost to be answered with some kind of dice expression included.    On the other hand, it is possible to
use this feature to create calculated characteristics and attributes that report their levels as dice
expressions.

When CampMan calculates the level of a random characteristic for a character, it "rolls" all dice
expressions, replacing each dice expression it comes across with an appropriate, randomly generated
number.

It can be important that you make the dice operator clearly separate from its arguments since "d" may
also be used as part of a variable name.

EXAMPLE:    The following expression will be interpreted as a single variable

STd6
The following expression will be interpreted as "Strength" number of 6-sided dice

(ST)d6

Variables
Variables act as place holders for numbers.    Replacement values are inserted for each variable before
an equation is evaluated.    The variable's name indicates what value to insert.

A variable with a race's name will be replaced by a 1 if the evaluating object is the race itself or is a
character of that race.    A variable with a characteristic's name will be replaced with the character's or
race's level for that characteristic.    Similarly, if the variable has an attribute's name, it will be replaced
with the character's or race's level for that attribute.    Finally, if the variable has the same name as an item
it will be replaced with the number of such items owned by the character.    Otherwise, the variable will be
replaced with 0.

It is important to note that if a characteristic, attribute or item has the same name as a race, its level can't
be accessed by a variable since the variable will always be replaced with either a 1 or 0.    Attribute levels
similarly override item levels, and characteristic levels override both attribute and item levels.

EXAMPLE:    The following equation gives the average between a character's or race's Strength
and Agility.

(Strength + Agility) / 2
EXAMPLE:    The following equation answers 3 for the race Elf and for characters which are of

the Elf race and answers 0 for all other races and characters.

3 * Elf

The following procedure may be used to determine what value a variable will be replaced with:
Variable Replacement Procedure

subtopics:
The @race and @character variables
The @race: modifier
The @list: modifier

Related Topics:
Operators
Functions

The @race and @character variables
The two variables @race and @character are replaced with either 1 or 0 depending on whether the
equation is being evaluated for a character or race.

EXAMPLE:    The following equation evaluates to half a character's Strength or half a race's
Agility.

(@character * Strength + @race * Agility) / 2

The @race: modifier
The @race: modifier is used to access either a character race's levels or the default race's levels.    Any
variable preceded by @race: is treated as if the equation were being evaluated for the appropriate race
rather than the object for which it is actually being evaluated.

EXAMPLE:    For a character, this equation calculates the average between the character's
Strength and the character race's Agility.
For a race, this equation calculates the average between the race's Strength and the
default race's Agility.

(Strength + @race:Agility) / 2
EXAMPLE:    If Elf is not the default race, the following equation answers 3 for characters which

are of the Elf race, but answers 0 for all races and all other characters.
If Elf is the default race, the following equation answers 0 for characters which are not
of the default race and answers 3 for all races and all characters of the default race.

3 * @race:Elf

The @list: modifier
The @list: modifier is used to access the level a character or race has with any member of an attribute
list.

EXAMPLE:    If Long Sword and Long Sword [fromShortSword] are two members of the same
attribute list:
For a character with neither attribute, both these equations answer -Agility.
For a character with the Long Sword attribute, both these equations answer Long
Sword - Agility.
For a    character with the Long Sword [fromShortSword] attribute, both these
equations answer Long Sword [fromShortSword] - Agility.

@list:Long Sword - Agility
@list:Long Sword [fromShortSword] - Agility

Variable Replacement Procedure
1) If the variable name is "@race", replace the variable with 1 if the equation is being evaluated for a

race.    Otherwise replace the variable with a 0.

2) If the variable name is "@character", replace the variable with 1 if the equation is being evaluated
for a character.    Otherwise replace the variable with a 0.

3) If the variable name begins with "@race:" and the equation is being evaluated for a character,
replace the variable with the value it would have been replaced with if the variable name did not
begin with "@race:" and the equation was being evaluated for the character's race.

4) If the variable name begins with "@race:" and the equation is being evaluated for a race, replace
the variable with the value it would have been replaced with if the variable name did not begin
with "@race:" and the equation was being evaluated for the default race.

5) If the variable name begins with "@list:" and the rest the name is the same as an attribute list
member's name, replace the variable with the race or character's level for any member of that
attribute list.    Otherwise replace the variable with a 0.

6) If the variable name is the same as a race name:    If the equation is being evaluated for that race
or a character of that race, replace the variable with a 1.    Otherwise replace the variable with a 0.

7) If the variable name is the same as a characteristic name:    Replace the variable with the race or
character's level with that characteristic.

8) If the variable name is the same as an attribute name:    Replace the variable with the race or
character's level with that attribute.

9) If the variable name is the same as an item name:    If the equation is being evaluated for a
character, replace the variable with the number of those items possessed by the character.   
Otherwise replace the variable with a 0.

10) If the variable name is not a race name, characteristic name, attribute name, or item name,
replace the variable with a 0.

Functions
Without functions, many equations would become long and complicated while others might not be
possible at all.    Functions, like operators, act upon numbers in a pre-defined way and return a number.   
But unlike operators, which act on the operands around them, functions act on the numbers in their
argument list.

EXAMPLE:    The following equation answers either the character's Strength or the character
race's Strength plus one (whichever is greater) and divides it in half.

max(Strength, @race:Strength + 1) / 2

subtopics:
Internal Functions
User Defined Functions

Related Topics:
Equations
The Function Editor
Compilation Errors
Evaluation Errors

Internal Functions
Campaign Manager has a number of internally defined functions.    Most of these functions could not be
realized any other way.    The following is the current list of internal functions:

Function # args Returned Value
boolean() 1 0 if its argument is equal to 0, otherwise 1
ceil() 1 least integer greater than or equal to its argument
floor() 1 the greatest integer less than or equal to its

argument
max() # > 0 the greatest valued argument
min() # > 0 the least valued argument
not() 1 1 if its argument is equal to 0, otherwise 0
sqr() 1 the value of its argument squared
sqrt() 1 the value whose square is equal to its argument
trunc() 1 the integer portion of its argument

User Defined Functions
In addition to internal functions you may also have user-defined functions at your disposal.    User-defined
functions are stored as part of the campaign file.    As their name implies, user-defined functions are
functions which you (the GM) define.    You will probably want to define functions for often used
sequences of operations.    (i.e. calculating a characteristic's cost)

A user-defined function is basically a special equation referenced by a name.    It may use all the
operators, numbers, variables and functions that other equations may use.    However, variables are
handled differently from standard equations.

Standard equations (those not used to define a function) are evaluated for races and characters.    As a
result, standard equations use variables to represent values in races and characters.    But functions are
independent of other objects and only act on the numbers given in their argument list.    So variables are
used in functions to represent their arguments.

When a function is compiled, each variable is renamed as arg1, arg2, arg3, etc.    The trailing number
indicates the position in the argument list from which the variable gets its value.

EXAMPLE:    If equation (a) is compiled as a function, it becomes equation (b).

(a)    (a + b - arg2) / 2 (b)    (arg1 + arg3 - arg2) / 2
If equation (b) is then given the name EqB() and evaluated as follows:

EqB(1, Strength, Agility / 3)
the result is the value of (1 + Agility / 3 - Strength) / 2

Functions may be defined using the Function Editor.    See that topic for more information.

The Equation Editor
The Equation Editor is a dialog box used to test different equations you wish to use.    You do not need to
use the Equation Editor to enter text into an equation field.    However, an equation field simply takes the
text you enter and tries to compile it into an equation when the object is saved.    The Equation Editor
allows you to enter text, compile it into an equation (if possible), and test that equation by giving test
values to its variables.

To bring up the Equation Editor for a given equation, click in the equation's entry field and select "Edit"
from the "Equation" menu.    When the dialog box opens, its title will indicate what equation you're editing. 
This is important, because when you press "Done", the text representing your new equation will replace
the contents of that entry field.

The Equation editor has a large, multi-line entry window at its top.    This holds the text of the edited
equation.    To compile an equation press the "Evaluate" button.    Any changes you've made to the
entered equation will be compiled.    If a compilation error occurs, a description of the problem will be
displayed    in the value field.    If the equation compiles successfully, it will be evaluated and the results
will be shown in the value field.

Whenever the edited equation is successfully compiled, the field titled "variables" will be updated to list all
the variables from the current equation.    The variable names are followed by their assigned values
(initially 0) contained in brackets.    To change a variable's assigned value, select it in the list box and enter
the new value into the value field.    Click in any other field (or press return) and the variable's value is
updated.

In order to remove the selection from the list box completely, you must press the evaluate button.    In this
way the value field serves a dual purpose.    When a variable is selected, it displays the variable's value
and lets it be modified.    When no variable is selected, the field displays either the compilation error or the
result of evaluating the edited equation.

When you are done editing the equation, you may press either "Done" or "Cancel" to close the Equation
Editor.    If you press Cancel, the dialog box is closed.    If you press Done, the dialog box is closed and the
text for the new equation is inserted into the edited equations entry field.    The Done button is disabled
unless the edited equation compiles without error.

Closing the dialog box with the system menu is the same as pressing Cancel.

Related Topics:
Compilation Errors
Evaluation Errors

The Function Editor
User-defined functions are managed with the Function Editor.    It allows you to create, delete and rename
user-defined functions.    It can also be used to explore the internal functions.

To open the Function Editor, choose "Functions" from the "Campaign" menu on the main window's menu
bar.    You will see a dialog box very similar to an Equation Editor.    In fact, the Function Editor is a
modified version of the Equation Editor.    You may wish to read that section first if you are unfamiliar with
it.

Just like in the Equation Editor, the multi-line entry window is used to hold the edited function's text.    The
arguments field lists the arguments accepted by the edited function, and the value pane is used to display
the function's compilation/evaluation errors, the function's evaluation, or the selected argument's value.   
The value pane may also be used to change an argument's assigned value.

Unlike the Equation Editor, the dialog box has a "fn:" combo box used to select the function name.    Also
two big buttons have been renamed to reflect their new functions.    When you are done editing a
function's definition, you press the "Save" button to save the changed definition.    Note that the Save
button does not close the dialog box.    When you wish to close the dialog box, press the "Close" button.

The fn: combo box includes a list of all the currently defined function names.    To view/modify a function
which is already defined simply select its name.    You may then modify, compile, and test your changes.   
Don't forget to press Save when you are through making changes.    It is important to realize that a
function's definition does not change until the Save button is pressed.

If you select an internal function, a description of the function will be displayed along with an appropriate
number of arguments and a value.    Although you can't redefine or overwrite an internal function, you can
give it test values and see the results.    This lets you experiment with the internal functions until you are
more comfortable with how they work.

Selecting "New" from the combo box's pop-up menu will clear the definition entry field and display an
empty function name.    Whenever the function name is empty, you will be prompted for a new name when
the Save button is pressed.    You may not overwrite other defined functions.

Selecting "Delete" from the combo box's pop-up menu will remove the selected function from the list of
defined functions, clear the definition entry field and display an empty function name.    You may not delete
functions which are used by other defined functions or equations used elsewhere in the campaign.

Selecting "Rename" from the combo box's pop-up menu will prompt you for a new name.    The selected
function will be renamed to the new name and the new name will be displayed in the combo box.    The
name change is also reflected in every other function or equation that uses the renamed function.

For more information on functions see Functions.

Related Topics:
Compilation Errors
Evaluation Errors

Compilation Errors
When Campaign Manager can't compile an equation due to some problem with the entered text, it
answers a compilation error.    Each error reflects a different problem that can arise while compiling an
equation.    Objects can't be saved unless their equations can be compiled.

The following list explains all the possible compilation errors:

Empty Equation    This error occurs when an empty string is compiled or when a pair of empty
parentheses is detected in the entered text.

EXAMPLE:    1 + max(2, Strength - () / 2)
Mismatched Parentheses    This error occurs when parentheses have not been paired

incorrectly.

EXAMPLE:    1 + max(2, (Strength - 1 / 2)
Missing Operator    This error occurs when two operands are not separated by an operator.

EXAMPLE:    1 + max(2, (Strength - 1)    2)
Missing Term    This error occurs when two operators are not separated by an operand or when

an operator is at the beginning or end of the entered text.

EXAMPLE:    1 + max(2, (Strength -) / 2)
Unknown Function    This error occurs when a function name has been used that is not defined.

EXAMPLE:    1 + mx(2, (Strength - 1) / 2)

Related Topics:
Evaluation Errors

Evaluation Errors
When an equation is evaluated (i.e. to calculate a cost or level) an evaluation error may occur.   
Evaluation errors are reported by a message box.    The message box's title indicates the type of error.   
The text reflects the equation that caused the problem and the object for which the equation was being
evaluated.

An evaluation error always indicates an equation which has not properly dealt with all the conditions
under which it might be evaluated.    For instance, dividing by Strength, when Strength might be 0.    It
should always be kept in mind that a variable could be set to 0 or a negative number.

The following list explains all the possible evaluation errors:

Divide by zero    At some point while the equation was being evaluated, an attempt was made to
divide by 0.

Imaginary Number    At some point while the equation was being evaluated, an attempt was
made to take the root of a negative number.

Sides < 0    At some point while the equation was being evaluated, a dice expression was
formed that had a negative number of sides.

Circular Reference    At some point, a function/ equation was called that uses itself as part of its
definition (either directly or by using second function/ equation    that calls the first).

Related Topics:
Compilation Errors

The Main Window
The main window is where all the objects in a campaign are listed, accessed, created, destroyed, etc.    In
essence, the main window is the campaign manager.

Objects are listed in two list boxes labeled "name" and "type".    The first lists all the names used by at
least one object in the loaded campaign.    The second lists all the types of objects which have the name
selected in the first list.    The objects included in these lists may be narrowed by using the Filter Dialog.

The "Create" sub-menu located on the "Objects" menu is used to create new objects.    Choose the type
of object to be created form this sub-menu.    While the program is running in Player Access mode, this
sub-menu is replaced by a single item "Create Character".

In addition to the two object lists, while running in GM Access mode two other panes are available.    The
first is a "characteristics" list box, used to manipulate the order in which characteristics are displayed.    To
move a characteristic name, click and hold the middle mouse button on the name and drag the indicator
to a new position.

The final field, available only in GM Access mode, is not initially visible when the program starts up.   
Simply resize or maximize the main window to make it visible.    This multi-line entry field, labeled
"attached notes", works similarly to the notes field in item managers.    When an object is selected in the
object lists, the text for its attached note is displayed here and can be modified directly.    However, to add
an attached GM note or to change the title/topics of the attached note, it will be necessary to actually
open the attached note's manager.

Related Topics:
The Filter Dialog

The Filter Dialog
The Filter dialog is used to narrow the number of objects that are included in the main window's object
lists by specifying which object types to list.    A more advanced feature allows further narrowing using the
Note Search Dialog as an additional filter.    To open the Filter dialog simply select "Filter..." from the main
window's "Objects" menu.

The Filter dialog consists of two sets of check boxes and several push buttons.    The upper section, titled
"Included Types", is used to select which object types to include in the main window's object lists.    Each
checked box indicates an object type to include.

The "all" and "none" buttons are used to quickly check/uncheck all the different types.    Any changes you
make in the filter do not take effect until you press the "OK" button.    If the OK button is disabled, then
there have been no changes made.

You can save a default set of object types by using the "Save as Default" button.    When this button is
pressed, a list of all the currently checked object types is saved.    This list will be used as the initial filter
whenever CampMan is started.

The bottom section, titled "Link to Note Search", is an advanced feature that allows you to use the Note
Search dialog as an additional filter.    You may limit the filter to include only notes and objects attached to
notes which are listed in the Note Search dialog's found list.    Or you may exclude those objects instead.   
The settings in this section only have an effect only when both the Filter dialog and the Note Search
dialog are open.

EXAMPLE: To list all objects which do not have an attached note...

i: If the Note Search dialog is currently open, close it.

ii: Open both the Note Search dialog and the Filter dialog.

iii: Press "Start Search" in the Note Search dialog.

iv: Press "all" in the Filter dialog
and check the "exclude found list" check box.

v: Press the "OK" button in the Filter dialog.

Objects
The following sections describe in detail the specific properties of each CampMan object type and how
their object managers work.

Included Topics:
Attributes
Attribute Lists
Characteristics
Characters
Creatures
Items
Notes & GM Notes
Races

Attributes
Attributes represent those abilities and/or descriptive qualities that only some of the characters/races
have (i.e. absolute direction, magical ability, tracking skills, etc).    Attributes help "round out" a character
and make him unique.

Attributes come in three types: assigned, calculated and owned.    Assigned attributes are assigned their
level and have an associated maximum level they may be assigned.    Calculated attributes calculate their
level (using levels from other attributes, characteristics, etc).    Owned attributes may only have a level of
1 or 0, that is they are either "owned" or "not owned".    All attributes have a calculated cost.    You may
select the attribute's type using the combo box in it's manager.

Each attribute uses two equations.    The bottom entry field is labeled "cost" and accepts the cost
equation.    The entry field just above the cost field is for the equation which calculates the level, the
maximum level, or the restriction.    This field is labeled to remind you what the equation is supposed to
calculate.

When an attribute's level/max level/restriction equation evaluates to 0 for a given race or character,
CampMan assumes that the attribute is restricted to that race/character and refuses to add it to (or
removes it from) the object's attributes.

When an assigned attribute's max level equation evaluates to -1 for a given race or character, CampMan
assumes the attribute has no maximum level for that object.

For more on equations see Equations.

Unlike characteristics, CampMan assumes attributes have a positive level.    If your original concept was
for a disadvantage with strictly negative levels, you should simply label it a disadvantage and use positive
levels to indicate the severity of the disadvantage.    If your original concept was an attribute with both
positive and negative levels, you should use an attribute list with two members: an advantage and a
disadvantage.    See Attribute Lists for more information.

Attribute Lists
An attribute list is a group of attributes, only one of which may be owned by a race/character at any give
time.

An attribute list will often be used to create the equivalent of a single attribute which uses names for its
levels rather than numbers.    Another use for an attribute list is to group conflicting attributes together so
that no two of them can be owned at the same time.

Attribute list members are treated as separate attributes when an equation is being evaluated.    Thus a
variable with the name of one member will not be replaced with the level of another member unless it is
preceded with the @list: modifier.    For more on equations and variables see Equations.

Although each member of an attribute list appears to the program as if it is a separate attribute, they are
all actually part of one object.    Whenever you open an attribute list's member, you in fact open the
attribute list itself.    Thus all attributes in an attribute list share a common object manager and share a
common attached note.   

When an attribute list is first created, you are prompted for a new member name since attribute lists can
not exist without at least one member.    An attribute list manager looks and acts exactly like an attribute
manager except for the name field which has been replaced with a member combo box.

The name selected in the member combo box indicates which attribute's properties are being
displayed/modified by the type, level, and cost fields.    Each of these properties may be changed for each
member of the list.

To create a new member for the list, choose "New" from the "Attribute" menu.    To delete the selected
member, choose "Delete".    To rename the selected member choose "Rename".

When an attribute list needs to be identified by a name, it uses the title of its attached note, or the name of
one of its members if there is no attached note.

For more on attributes see Attributes.

Characteristics
Characteristics represent those abilities and/or descriptive qualities which are a part of every character   
(i.e. strength, intelligence, agility, hit points, etc).

There are three types of characteristics: assigned, calculated and random.    You may select the
characteristic's type by using the "type" combo box in its manager.

Assigned characteristics are assigned a level and have a cost associated with that level.

Calculated characteristics do not have a cost associated with them since their level is calculated (using
levels from other characteristics, attributes, etc).

Random characteristics are similar to calculated characteristics in that they have no associated cost and
their level is calculated.    When a random characteristic's level equation is evaluated,    all dice
expressions are replaced with appropriately generated random numbers.

A random characteristic's level is calculated only for characters and is calculated only once (i.e. when the
character is created).    A race's level for a random characteristic is assigned and is used as the minimum
level required by characters to be assigned as members of that race.    For more information see A
Character's Race.

Random characteristic levels for characters may be changed during GM Access mode by checking the
"Edit Random (gm)" box in the Program Configuration dialog.

Each characteristic uses one equation to calculate its cost/level for races and characters.    This equation
is entered/displayed in the bottom entry field in each Characteristic Manager.    This field is labeled "cost",
"level" or "init level" to remind you what the equation is used to calculate.

For more on equations see Equations.

subtopics:
Characteristic Entry Sections
Hidden Characteristics

Characteristic Entry Sections
The characteristics displayed in creature, race, and character managers are grouped into an input section
surrounded by a box.    There are two ways to affect how this section will look.

The size of the characteristics box can be specified using the campaign configuration dialog box.    Simply
enter the number of rows/columns of characteristics to display.    Characteristics are listed within columns
first. (i.e. first four in the first column, second four in second column, etc.)

The order in which characteristics are listed can be specified by using the characteristics list in the main
window.    This list is a special list that can be reordered.    To move a characteristic, simply click and hold
the middle mouse button on the characteristic to be moved.    Then drag the indicator box to a new
position and release the button.

Hidden Characteristics
Characteristics may be hidden.    Hidden characteristics are not shown and may not be edited by the user
while the program is running in Player Access mode.    When a character's race changes, any hidden
assigned characteristics are assigned new values equal to those of the new race.

A characteristic may be either hidden or shown by selecting it in the main window's characteristics list and
choosing "Hide" or "Show" from the "Characteristics" menu.

Hidden characteristics may be made visible during GM Access mode by checking the "View Hidden (gm)"
box in the Program Configuration dialog.

Characters
Characters represent the people (played by the GM or by the roleplayers) in a campaign.

The character manager is probably the most complicated window used in Campaign Manager.    It not
only has name, player and race entry fields but also has a cost button, a characteristics section with
multiple entry/display fields and two list boxes used to display/modify a character's attributes and
possessions.

The player entry field is important, since this not only indicates the character's author, but also restricts
others from editing the character in Player Access mode.    When CampMan is in Player Access mode,
only those characters whose player name is the same as the entered user name can be edited.

A character's cost is calculated whenever the character is opened, the character is saved, "Recalculate"
is chosen from the "Character" menu, or the cost button is pushed.    If the campaign is configured to add
race costs to the character cost, they will be added to the cost of characteristics and/or attributes.    The
total will be shown in the cost button.

In the characteristics section, each assigned characteristic has an entry field and each calculated
characteristic shows its last calculated level.    To recalculate the calculated characteristics, you must
recalculate the character's cost.    To change all the characteristics to the their default, racial values
choose "Def Characteristics" from the "Character" menu.

The attributes section lists all the characters attributes along with their levels.    To add an attribute choose
"Add" from the "Attributes" menu, enter the attribute name followed by a space and the desired level, then
press return.    To change the level for an attribute, select the attribute, type in the new level, and press
enter.    Finally, to remove an attribute, select it and choose "Remove" from the "Attributes" menu.

If a character's race has attributes, they are automatically added to the character's attributes if they are
not already listed.    Although you can change a racial attribute's level, or switch to another member of its
attribute list, you may never completely remove a racial attribute from a character.    Deleting a racial
attribute just changes that attributes level back to its racial default.    You may change a character's
attributes to the racial default list by choosing "Def Attributes" from the "Character" menu.

The possessions section works much like the attributes section, but is used to enter items and the
number owned.    To add a possession choose "Add" from the "Possessions" menu, enter the item name
followed by a space and the desired number, then press return.    To change the number of an item
owned, select the item, type in the new number, and press enter.    Finally, to remove a possession, select
it and choose "Remove" from the "Possessions" menu.

Related Topic:
A Character's Race

A Character's Race
The race entry field is used to indicate/change the character's race.    The character's race will probably
have an affect on its cost and/or the attributes it will possess.    It is important to note that a new race
entered into the race field is not actually assigned to the character until the cost is recalculated.    It is best
to always recalculate the character just after changing the race field, so that you won't get confused as to
what race is actually assigned to the character.

When a character's cost is recalculated and a new entry has been placed in the race field, CampMan
checks that there actually is a race of that name and that the character is allowed to become a member of
that race.    To become a member of any given race, a character must have levels in each of its random
characteristics which meet or exceed the levels assigned to that race's random characteristics.

But once a character has been assigned as a member of a given race, no more checking is done.    Once
a character is an Elf, it will legally remain an Elf until its race is changed to something else.    To change
the character's race back to Elf again would require that the character meet the minimum requirements
again.

This checking does not occur while running in GM Access mode.    Thus a GM may reassign a character
to any race and "make it stick".

Creatures
Creatures are used to keep track of monsters and animals within your campaign.   

Creatures, like characters and races, have characteristics and attributes.    But there are no restrictions as
to how these attributes/characteristics are assigned.    It is assumed there is a good reason for any
discrepancies that arise.

In many ways, the creature manager is just a form you fill which keeps you from adding non-existent
attributes or two attributes from an attribute list.    For creatures, all characteristics and attributes are
treated as assigned.    Also, there are no restrictions on what attributes you may add or what levels you
may assign.

Adding attributes in a creature manager is just like adding attributes in a race or character manager.   
Simply choose "Add" from the "Attributes" and enter the attribute you wish to add, followed by a space
and the level, then press return.    You may change an attribute's level by selecting it, typing the new level
and pressing return.    Finally you may remove an attribute by selecting it and choosing "Remove" from
the "Attributes" menu.

Note: Creatures may not be part of a character's possessions and may not be used as a character's race. 
If you wish to create a domesticated animal, simply create both a creature and an item with the same
name.    If you wish to keep track of both a monster and a race with the same name but different
attributes, you must create both a creature and a race.

Items
Items are the objects which people may possess in your campaign.

Items are the simplest object supported by Campaign Manager.    Each has a name and that's it!    To
make the Item Manager a little more useful it also has a notes pane.    The notes pane contains the text
from the item's attached note.    This way, you can enter/modify the item's description without the need to
open the attached note. However, if you want to add an attached GM note or change the attached note's
title/topics, you will have to open the attached note's manager.

Notes & GM Notes
Notes are exactly what their name implies, text which you have entered to describe or explain some topic
of interest.    Although many of the notes you create will be attached to another object -- used to describe
that object -- others will stand on their own, containing explanations of special rules or histories or other
interesting tidbits about your campaign.

The Note Manager has three entry fields, one for the title, one for a list of topics and one for the actual
text which comprises the note.    The title, of course, should describe the primary subject that the note
addresses.    The title is what is shown in the main window's objects list if the note is unattached.

The topics field is used to hold a comma separated list of topics on which the note applies or discusses.   
Topics are used to help categorize a note and how it relates to other notes or objects.    Although the
topics are not displayed in the main window, good topics lists help immensely when you use the Note
Search dialog.

GM notes are special notes which only the GM is supposed to read.    GM notes may not be read in
Player Access mode.    In fact, GM notes are not even listed in Player Access mode.

subtopics:
Attached Notes
Attached GM Notes

Related Topic:
The Note Search Dialog

Attached Notes
Although a note or GM note may be created separately from other objects, it is very useful to keep object
descriptions/explanations closely associated with those objects.    To this end, Campaign Manager utilizes
attached notes.

Attached notes are actually very important, since they are the best way to let a player know what he
needs to know about an object.    In Player Access mode, the user can only view notes and the characters
he creates.

When the user tries to open an object other than a note or character in Player Access mode, the attached
note is opened.    As long as a good description of every object is kept in an attached note, a player will
never be left wondering exactly what an object represents.

In GM Access mode, an attached note is not accessed through the main window, but through the first
menu on an object manager's menu bar (i.e. the "Characteristic" menu for Characteristic Managers).   
The "Create Notes" menu item is used to create a note attached to an object.    The "Open Notes" menu
item is used thereafter to open the object's attached notes.    In this way, descriptions may be kept of all
objects without cluttering up the objects list with a "Note" type under every object name.

Attached GM Notes
GM notes may be attached only to notes and notes may only have GM notes attached to them.    In this
way, a special addendum or "side note" may be added to a regular note which can only be read by the
GM.    To attach a GM note to an object other than a note, you first must create an attached note for the
object and then create an attached GM note for the attached note.

The Note Search Dialog
The Note Search dialog can be used to help find a note for which you have forgotten the title, or all the
notes which pertain to a given subject, or all the notes which use a word or phrase within their text.    For
example, a player might use the Note Search dialog to find all the characteristic descriptions by searching
on the topic "Characteristic".    After a list of notes has been found, they can be opened directly from the
Note Search dialog.

To open the Note Search dialog you must choose "Search Notes..." from the "Notes" menu on the main
window's menu bar.    The Notes Search dialog uses three entry fields, one or two three-state check boxes
and two radio buttons to specify search criteria.    It has four push buttons used to indicate what action you
wish to take, and it has a list box used to display the set of notes found in the last search.

The Start Search button is used to find all notes which match the search criteria.    When the Note Search
dialog is first opened, the fields are set to search for all notes and GM notes.    To limit the search to only
notes/GM notes then you must clear/ check the "GM Notes" check box.    Similarly, to limit the search to
only attached/ unattached notes you must check/clear the "Attached" check box.

If you know a portion of the note's title you wish to find, you may enter it into the title field.    Similarly, if
you know a word or phrase which is contained in the body of the note, you may enter it into the text field.   
Finally, to search for notes which pertain to a particular subject(s), you may enter a comma separated list
into the topics field.    If "some" is checked in the "match topics" field, then all notes with at least one of the
topics listed will be found.    If "all" is checked, then only those notes which have all the topics listed will be
found.

After a search is made, the titles of all the notes matching the search criteria are displayed in the "found"
list box.    If no notes were found that matched the given criteria, "... none found ..." is displayed.    To open
one of the notes displayed in the found list, simply double click on its title.

The Append button is used to add more notes to the current list of found notes.    Whenever Append is
pressed, the group of notes which match the new search criteria do not replace the current list, but are
instead added to the current list.

The Narrow Search button is used to narrow the number of notes displayed in the found list.    By
specifying new search criteria and then pressing Narrow Search, you find notes which meet both the last
search criteria and the new search criteria.

The Last Search button is used to retrieve the last search criteria which found at least one note, along
with the found list of notes.

The following procedure may be used to determine if a given note matches the specified search criteria:
Note Search Matching Procedure

Note Search Matching Procedure
1) If the "Append" button was pressed and the note is currently listed in the found list, then the note

matches the search criteria regardless of the following conditions.

2) If the "Narrow Search" button was pressed and the note is not listed in the found list, then the
note does not match the search criteria.

3) If the note is a GM note and the "GM Notes" check box is clear (or does not exist), then the note
does not match the search criteria.

4) If the note is not a GM note and the "GM Notes" check box is checked, then the note does not
match the search criteria.

5) If the note is attached to another object and the "Attached" check box is clear, then the note does
not match the search criteria.

6) If the note is not attached to another object and the "Attached" check box is checked, then the
note does not match the search criteria.

7) If the title field is not empty and the note does not include the entered text as part of its title, the
note does not match the search criteria.

8) If the topics field is not empty and the note includes none of the entered topics, then the note
does not match the search criteria.

9) If the topics field is not empty, the "all" radio button is on and the note does not include all the
entered topics, then the note does not match the search criteria.

10) If the text field is not empty and the note's text does not include the entered text, then the note
does not match the search criteria.

11) If none of the above conditions are true, the note matches the search criteria.

Races
Races not only represent the different races a character may be but also indicate common default values
for characteristics and attributes which are owned by every member of that race.

Other than the name entry field, race managers have two major input sections and a cost button.    The
first section is used to enter characteristics.    Each assigned and random characteristic has a
corresponding entry field.    Each calculated characteristic displays its last calculated value.    To
recalculate the race's characteristics, you must recalculate the race's cost by pressing the cost button.

The cost button displays the sum of all characteristic and attribute costs for the race when the costs were
last calculated.    These costs are obtained by evaluating the cost equations for attributes and assigned
characteristics.    A race's cost may or may not effect the cost of a character depending on how the
campaign is configured.

The last input section is for attributes.    This list box shows all the race's attributes and the level
assigned/calculated for each.    To add an attribute choose "Add" from the "Attributes" menu, enter the
attribute name followed by a space and the desired level, then press return.    To change the level for an
attribute, select the attribute, type in the new level, and press enter.    Finally, to remove an attribute,
select it and choose "Remove" from the "Attributes" menu.

Related Topic:
A Character's Race

Printing
This version of Campaign Manager includes some rudimentary printing capabilities for Notes, GM Notes,
Creatures, Races, and Characters.    This version also introduces the capability of printing a "cost
breakdown" for a race or character.

To print any of the above object types you must open its manager and select "Print" from the first menu on
the menu bar (i.e. the "Note" menu for note managers).    To print a cost breakdown you must select
"Breakdown" from the "Cost" menu.

In either case, this will bring up a "Printing Dialog" which allows you to select the printer, the font and the
font point size you wish to use.    You may also invoke the currently selected printer's "Setup Dialog" which
will let you set the more advanced/specific features of the printer.

CampMan always prints the information based on what is displayed by the object manager, not
necessarily the information saved to memory/disk.

At this time, CampMan can't print multiple pages.    This can cause the printed information to "scroll off the
page".    Should this happen, changing to a smaller size font or switching the printer to "landscape" mode
(with the setup dialog) might alleviate the problem.

The following two sections discuss the specific aspects of printing the different object types.

Included Topics:
Printing Notes & GM Notes
Printing Creatures, Races & Characters
Printing Cost Breakdowns

Printing Notes & GM Notes
Notes and GM Notes are printed with their title centered at the top of the page followed by their list of
topics and the text wrapped between the page margins.    GM Notes have "(GM NOTES)" displayed under
their titles.

subtopic:
The Problem With Tables

The Problem With Tables
Since CampMan doesn't fully support WYSIWYG displays of a note's text, it can be difficult to format a
table of information that will both display nicely and print nicely.    Here are some hints:

· Do Not Use Tabs
use only spaces to format a table

· Use Solid Table Lines
when separating titles/rows of a table use a solid dashed line rather than separate lines for each
column.    These separation lines might print too long or short but at least they won't be
"misaligned"

The "Text" can be used to switch the text displayed between the System font and an approximation of the
last used printer font.    Although this may help in arranging a table to print properly, I inexplicably have
had more success with the System font.

Printing Creatures, Races & Characters
For this discussion I will refer only to printing Characters.    Creatures and Races print the same with
appropriately omitted sections of information.

CampMan prints a Character's name and player centered at the top of the page.    It then prints the
characteristics, formatted like the displayed characteristics, in the upper left corner.    Next to the
characteristics, the character's race is printed.    The character's attributes and possessions are printed in
separate sections fitted below and around the other information.    The character's total cost is displayed in
a rounded rectangle in the upper right corner of the printout.

Before a character is printed, CampMan recalculates its cost/levels to insure that it is printing a "legal"
character.    If any problems arise it will inform you and probably refuse to print.    In the special case that
an attribute was found to be illegal and subsequently removed, you will be given the option to continue
printing anyway.    You probably want to abort printing since the character is no longer the one you
originally intended to print.

Printing Cost Breakdowns
The cost breakdown is a listing of each assigned characteristic and each attribute along with the cost it
contributes to the total cost of a race or character.    If the campaign is configured to add racial costs to a
character, the total cost of racial characteristics and/or racial attributes will be listed as a separate "race
cost" for characters.    If any hidden, assigned characteristics contribute to the cost, they will be totaled
and listed as a "hidden cost" in the characteristics subsection.

The printout consists of up to three subsections; one each for characteristic costs, race costs, and
attribute costs.    In addition to the separate costs for each characteristic and attribute, those two
subsections also have a "subtotal" of the costs listed.    Centered at the top of the page is the name of the
race/character, the text "Cost Breakdown", and a copy of the total cost.

Before a cost breakdown is printed, CampMan recalculates the cost/levels to insure that it is printing a
"legal" race/character and that all the costs are current.    If any problems arise CampMan will inform you
and probably refuse to print.    In the special case that an attribute was found to be illegal and
subsequently removed, you will be given the option to continue printing anyway.    You probably want to
abort printing since the race/character is no longer the one you originally intended to print.

The Dice Roller
The Dice Roller is a special dialog box that lets you roll sets of dice and see all the results or evaluate a
dice expression and see the results.    You open a Dice Roller by selecting "Dice Roller..." from the
"Campaign" menu in the main window.

To roll a set of dice, all with the same number of sides, and see the results make sure the "# dice" button
is checked and enter a number of dice and sides in the two    entry fields.    You may use the direction keys
to increase/decrease these values by 1 or you may use the "PgUp" and "PgDn" keys to
increase/decrease these values by 10.    Pressing a number key while the "# dice" field has the input
focus will enter the given number into the field.    While the "sides" field has the input focus some number
keys will enter a commonly used dice (i.e. 1 for a 10 sided die, 2 for 20, 4 for 4, etc).    The "sides" field
also has a pop-up menu that can be used to enter commonly used dice.

Once you're satisfied with the field values, press the Roll Dice button.    If "add dice" is checked, the dice
are added together and the total is shown in the bottom field.    If "add dice" is clear, the results of each die
roll will be listed separately (you may need to resize the dice roller to see all the results).

You may also use the Dice Roller to evaluate a dice expression.    To do this, make sure the "exp" button
is checked and enter an equation into the exp field.    This is exactly like entering an equation into the
Equation Editor and the results are exactly the same except that dice expressions are replaced with
appropriate random numbers when the equation is evaluated.    When you press Roll Dice, the equation
will be compiled and evaluated (variables will be replaced with 0's).    The results are shown in the bottom
field.

EXAMPLE: to display the results of rolling 3 six-sided dice and adding 3 enter the following
expression into the exp field

3d6 + 3
EXAMPLE: to display the results of rolling two 10 sided dice and interpreting them as a percentile

enter the following

1d10 + 10 * (1d10 - 1)
EXAMPLE: if you define a function called maxSum3of4() as follows

max(arg1 + arg2 + arg3, arg1 + arg2 + arg4, arg1 + arg3 + arg4, arg2 + arg3 + arg4)

then the following expression will answer the sum of the three largest numbers
among four six-sided dice

maxSum3of4(1d6, 1d6, 1d6, 1d6)
For a full discussion of equations and functions see Equations and Functions.

Program Configuration
To change how the program behaves or to set/change the program password you use the Program
Configuration dialog.    To open this dialog, choose "Program" from the "Configuration" menu on the main
window's menu bar.

The Program Configuration dialog has four check boxes and four buttons.    Each check box is used to
activate/deactivate a program feature.

Dialog Emulation
When Dialog Emulation is active, the object managers respond to navigation keys like
dialog boxes.    This means that the input focus will shift when the tab/direction keys are
used and the default button (indicated by a thick border) will be pressed when the enter
key is used.

If Dialog Emulation is active, the Ctrl key must be held down to put a tab or carriage
return in a multi-line entry field.    Also, the menu bar may not respond to the Alt key
unless one of the entry fields has the input focus.    If this should occur, simply press the
Tab key once and try again.

Application Minimize
If Application Minimize is active when the main window is minimized,    all CampMan
windows are hidden from view until the main window is restored.    This gives you a quick
way to "minimize" all the CampMan windows if you need to clear the screen for
something else without closing CampMan.

However, this means you can't minimize the main window to make room for other object
managers.

View Hidden (gm)
View Hidden is used to display/modify hidden characteristics while running in GM Access
mode.    If View Hidden is not active, hidden characteristics may not be viewed in GM
Access mode.

This feature has no effect on Player Access mode.

Edit Random (gm)
Edit Random is used to modify a player's random characteristics while running in GM
Access mode.    If View Random is not active, random characteristics may not be
modified in GM Access mode.

This feature has no effect on Player Access mode.

Keep Backup File
If Keep Backup File is active, whenever a campaign is saved to a file which already
exists, that file is renamed to have the ".BAK" extension instead of deleted.    Whether this
feature is active or inactive, any backup file already in existence is deleted.

Save Prog Configuration at Exit
If Save Prog Configuration at Exit is active, the current settings    of this and the other
three features will be saved when you exit the program.    The settings will then be
restored, the next time you run CampMan.

If you press the Cancel button, any changes to the above four features will be ignored.    Pressing the OK
button activates any checked features and deactivates any unchecked features.    Pressing the Save
button not only activates/deactivates the features, but also saves the settings to the WIN.INI file.

To set/change the program password, press the "Prog Password..." button.    This brings up a dialog box
used to change the program password.    To successfully change the program password, you must enter
the old password correctly and enter the new password twice for verification.    If you should press the
Cancel button, the dialog will close and the program password will remain unchanged.    Pressing the OK
button while the other fields are correctly filled, immediately and irrevocably changes the program
password from the old password to the new password.

Campaign Configuration
To change how the campaign works or to set/change the campaign password you use the Campaign
Configuration dialog.    To open this dialog, choose "Campaign" from the "Configuration" menu on the
main window's menu bar.

The Campaign Configuration dialog has four sections and three buttons.

Characteristics
This section is used to control the appearance of the characteristics box in creature, race
and character managers.    It specifies either a number of columns or a number of rows to
use when listing characteristics in those managers.

Attributes & Possessions
These two sections are use to control the placement of the attributes and possessions
lists in creature, race and character managers.

Race costs added
This section is used to determine which costs (if any) from a race should be added to a
character of that race.    You should be careful when either or both of these costs are
added to characters to make sure that all cost equations take into account the character's
race.    Improper use of these settings can artificially inflate the costs of a character.

If you press the Cancel button, any changes to the above four features will be ignored.    Pressing the OK
button activates any changes made.    These settings are saved to the file with the campaign.    When a
campaign is loaded, these settings are reset to the values they had when that campaign was last saved.

To set/change the campaign password, press the "Camp Password..." button.    This brings up a dialog
box used to change the campaign password.    To successfully change the campaign password, you must
enter the old password correctly and enter the new password twice for verification.    If you should press
the Cancel button, the dialog will close and the program password will remain unchanged.    Pressing the
OK button while the other fields are correctly filled, immediately and irrevocably changes the campaign
password from the old password to the new password.    This password will be saved to the file when the
campaign is saved.

USE CAMPAIGN PASSWORDS Sparingly and keep good records of the passwords you set because
there is nothing I can do to help you if you forget a campaign's password.    Without a campaign's
password, you might as well scrap that file and build a new one.

Menus
This section describes the menus for the main windows and each object manager.    Some menu choices
may not appear in Player Access mode.

Included:
Main Window Menus (GM Access)
Main Window Menus (Player Access)
Item Manager Menus
Note Manager Menus
Characteristic Manager Menus
Attribute Manager Menus
Attribute List Manager Menus
Creature Manager Menus
Race Manager Menus
Character Manager Menus

Main Window Menus (GM Access)
Campaign

New
Load
Save
Save As...
Functions...
Exit Program

Create a new campaign
Load a campaign from disk
Save the edited campaign
Save the edited campaign to a new file
Open the Function Editor
Exit CampMan

Objects
Open
Copy
Delete
Filter...
Create

Item
Note
GM Note
Characteristic
Attribute
Attribute List
Creature
Race
Character

Open the selected object
Copy the selected object
Delete the selected object
Open the Filter dialog

Create a new Item
Create a new Note
Create a new GM Note
Create a new Characteristic
Create a new Attribute
Create a new Attribute List
Create a new Creature
Create a new Race
Create a new Character

Characteristics
Hide
Show

Hide the selected characteristics
Show the selected characteristics

Notes
Save
Find Text...
Search Notes...

Save any modifications of the notes field
Open a Find Text dialog for the notes field
Open the Search Notes dialog

Configuration
Campaign
Program

Open the Campaign Configuration dialog
Open the Program Configuration dialog

Help
Contents
Welcome!
Tutorial
Reference
Menus
Using Help
About...

Open help and display Contents topic
Open help and display Welcome! topic
Open help and display the appropriate tutorial
Open help and display The Main Window topic
Open help and display this topic
Open help's help file
Open a dialog box describing the software

Main Window Menus (Player Access)
Campaign

Load
Save
Exit Program

Load a campaign from disk
Save the edited campaign
Exit CampMan

Objects
Open
Delete

Open the selected object
Delete the selected object

Filter...
Create Character

Open the Filter dialog
Create a new Character

Configuration
Dialog Emulation
App Minimize

Toggle on/off keyboard emulation as for dialogs
Toggle on/off application minimization

Help
Contents
Welcome!
Tutorial
Reference
Menus
Using Help
About...

Open help and display Contents topic
Open help and display Welcome! topic
Open help and display the appropriate tutorial
Open help and display The Main Window topic
Open help and display this topic
Open help's help file
Open a dialog box describing the software

Item Manager Menus
Item

Undo
Save
Delete
Create Notes
Open Notes

Restore the original contents of all input fields
Save any changes to the edited item
Delete the edited item
Create and attach a note to the edited item
Open the notes attached to the edited item

Notes
Find Text...
Search Notes...

Open a Find Text dialog for the notes field
Open the Search Notes dialog

Help
Contents
Welcome!
Tutorial
Reference
Menus
Using Help
About...

Open help and display Contents topic
Open help and display Welcome! topic
Open help and display the appropriate tutorial
Open help and display Items topic
Open help and display this topic
Open help's help file
Open a dialog box describing the software

Note Manager Menus
Note

Undo
Save
Copy
Delete
Print
Create GM Notes
Open GM Notes
Search Notes...

Restore the original contents of all input fields
Save any changes to the edited note
Create a new note with the edited note's properties
Delete the edited note
Print the currently entered title, topics and text
Create and attach a GM note to the edited note
Open the GM notes attached to the edited note
Open the Search Notes dialog

Text
Find Text...
Printer Font
System Font

Open a Find Text dialog for the text field
Display the text in the (Window's approx) printer font
Display the text in the System font

Help
Contents Open help and display Contents topic

Welcome!
Tutorial
Reference
Menus
Using Help
About...

Open help and display Welcome! topic
Open help and display the appropriate tutorial
Open help and display Notes/GM Notes topic
Open help and display this topic
Open help's help file
Open a dialog box describing the software

Characteristic Manager Menus
Characteristic

Undo
Save
Copy
Delete
Create Notes
Open Notes

Restore the original contents of all input fields
Save any changes to the edited characteristic
Create a new object with the edited object's properties
Delete the edited characteristic
Create and attach a note to the edited characteristic
Open the notes attached to the edited characteristic

Equation
Check
Edit

Check if cost equation compiles without error
Open an equation editor for the cost equation

Help
Contents
Welcome!
Tutorial
Reference
Menus
Using Help
About...

Open help and display Contents topic
Open help and display Welcome! topic
Open help and display the appropriate tutorial
Open help and display Characteristics topic
Open help and display this topic
Open help's help file
Open a dialog box describing the software

Attribute Manager Menus
Attribute

Undo
Save
Copy
Delete
Create Notes
Open Notes

Restore the original contents of all input fields
Save any changes to the edited attribute
Create a new object with the edited object's properties
Delete the edited attribute
Create and attach a note to the edited attribute
Open the notes attached to the edited attribute

Equation
Check
Edit

Check if the selected equation compiles without error
Open an equation editor for the selected equation

Help
Contents
Welcome!
Tutorial
Reference
Menus
Using Help
About...

Open help and display Contents topic
Open help and display Welcome! topic
Open help and display the appropriate tutorial
Open help and display Attributes topic
Open help and display this topic
Open help's help file
Open a dialog box describing the software

Attribute List Manager Menus

Attribute
Undo
Save
Delete
New
Rename
Create Notes
Open Notes

Restore the original contents of all input fields
Save any changes to the selected member
Delete the edited member
Create a new member
Rename the currently selected member
Create and attach a note to the edited attribute list
Open the notes attached to the edited attribute list

Equation
Check
Edit

Check if the selected equation compiles without error
Open an equation editor for the selected equation

Help
Contents
Welcome!
Tutorial
Reference
Menus
Using Help
About...

Open help and display Contents topic
Open help and display Welcome! topic
Open help and display the appropriate tutorial
Open help and display Attribute Lists topic
Open help and display this topic
Open help's help file
Open a dialog box describing the software

Creature Manager Menus
Creature

Undo
Save
Copy
Delete
Print
Create Notes
Open Notes

Restore the original contents of all input fields
Save any changes to the edited creature
Create a new creature with the edited creature's properties
Delete the edited creature
Print the currently entered settings for the creature
Create and attach a note to the edited creature
Open the notes attached to the edited creature

Attributes
Add
Change
Remove

Add a new attribute to the edited creature
Change the assigned level of the selected attribute
Remove the selected attribute from the edited creature

Help
Contents
Welcome!
Tutorial
Reference
Menus
Using Help
About...

Open help and display Contents topic
Open help and display Welcome! topic
Open help and display the appropriate tutorial
Open help and display Creatures topic
Open help and display this topic
Open help's help file
Open a dialog box describing the software

Race Manager Menus
Race

Undo
Save
Copy
Delete
Print
Make Default

Remove any entered changes since the last recalculation
Save any changes to the edited race
Create a new race with the edited race's properties
Delete the edited race
Recalculate and print the current settings for the race
Make the edited race the campaign's default race

Create Notes
Open Notes

Create and attach a note to the edited race
Open the notes attached to the edited race

Attributes
Add
Change
Remove

Add a new attribute to the edited race
Change the assigned level of the selected race
Remove the selected attribute from the edited race

Cost
Recalculate
Breakdown

Recalculate the cost for the edited race
Recalculate and print a cost breakdown for the race

Help
Contents
Welcome!
Tutorial
Reference
Menus
Using Help
About...

Open help and display Contents topic
Open help and display Welcome! topic
Open help and display the appropriate tutorial
Open help and display Races topic
Open help and display this topic
Open help's help file
Open a dialog box describing the software

Character Manager Menus
Character

Undo
Save
Copy
Delete
Print
Def Characteristics
Def Attributes
Create Notes
Open Notes

Remove any entered changes since the last recalculation
Save any changes to the edited character
Create a new object with the edited object's properties
Delete the edited character
Recalculate and print the character's current settings
Set the characteristic entry fields to the racial values
Set the character's attributes to the its race's attributes
Create and attach a note to the edited character
Open the notes attached to the edited character

Attributes
Add
Change
Remove

Add a new attribute to the edited character
Change the assigned level of the selected character
Remove the selected attribute from the edited character

Possessions
Add
Change
Remove

Add a new item to the edited character
Change the number of the selected item owned
Remove the selected item from the edited character

Cost
Recalculate
Breakdown

Recalculate the cost for the edited character
Recalculate and print a cost breakdown for the character

Help
Contents
Welcome!
Tutorial
Reference
Menus
Using Help
About...

Open help and display Contents topic
Open help and display Welcome! topic
Open help and display the appropriate tutorial
Open help and display Characters topic
Open help and display this topic
Open help's help file
Open a dialog box describing the software

License Agreement/Disclaimer
You are hereby given the right to use this software (Campaign Manager for Windows ver 1.15) for 30
days on a trial basis.    After 30 days you must pay a one-time registration fee of $20 U.S. to continue
using the software.

New Fangled Software and Doug D'Angelo expressly disclaim any warranties for supplying accurate or
functional materials relating to or including this software,    The user assumes all risk as to quality and
performance of the software.    In no event will the liability of New Fangled Software or Doug D'Angelo
exceed the price paid to register the software regardless of the form of the claim.    Use or registration of
this software indicates your understanding that you are using this product as-is, without any warranties of
any kind.

If you register this software, you are responsible for insuring that the registered software will be used only
by a single user*.    Further, you warrant that you will not knowingly distribute the registration number
given to you.

*The players/gm associated with the registered user may use this software on his/her machine but must
register if they wish to use it on their own

Registration Form
CAMPAIGN MANAGER FOR WINDOWS    ver 1.15

REGISTRATION FORM
To obtain a registration number, print and fill out this form.    Mail it along with your registration fee to:

New Fangled Software
3671 Rocky Creek Court

San Jose, CA.    95148    USA
To ensure that the name you wish to register under can be used, enter your name in the Registration
Dialog, leave the reg number blank and press OK.    A message box will inform you if the name can be
used for registration purposes.

This registration does not grant you the right to use Campaign Manager as part of a commercial business
or enterprise.    Should you wish to use CampMan as either a testing or a production tool as part of a
business, please contact New Fangled Software directly at the above address to discuss licensing terms.

Please type or print neatly:

Name: ___

Street Address: __

City, State: ___

Zip Code: ___________________

Phone Number (optional): _________________

Compuserve ID (optional): _________________

please fill out the amount paid:

Registration Fee $20 ______________
Mail you copy of 1.2 when released?

(optional)
$5 ______________

Tax (CA residents only..........................
8.25% for Santa Clara County

7.25% for all other Ca residents) ______________
Foreign postage (outside U.S.) $2 ______________

total: ______________

Your signature indicates that you have read and understand the included License Agreement/Disclaimer.   
In addition, your signature warrants that the program registered will be used by only a single user and that
you will not knowingly distribute the registration code given to you.    No registration forms without a
signature will be processed.

your signature: _______________________________

Thank you for registering,      Douglas D'Angelo

Product Support
You may use electronic mail to send questions, problems and/or bug reports for Campaign Manager for
Windows.    Send your mail to:

Doug D'Angelo

Compuserve ID:    72611,1263

Registered users may get answers to their questions by calling (408) 223 - 2461 from Monday through
Friday between the hours of 10 A.M. and 6 P.M.    Pacific Standard Time.    Have your registration number
handy for possible verification.

Glossary of Terms
attribute list manager
attribute manager
character manager
characteristic manager
creature manager
default race
input focus
item manager
middle mouse button
note manager
object manager
pop-up menu
race manager
three-state check boxes

input focus
The window pane/field that responds to keyboard typing is the window pane/field with the "input focus".

Entry fields indicate they have the input focus by displaying a flashing cursor at the current insertion point.
Lists show they have the input focus by displaying a dotted-gray rectangle about the current selection.
Buttons show they have the input focus by displaying a dotted-gray rectangle about their label.

middle mouse button
The third mouse button on three-button mice.    If your mouse does not have three buttons, hold down the
shift key while using the right mouse button.

three-state check boxes
This is a special kind of check box that can be checked, unchecked or "grayed".    Campaign Manager
generally uses the grayed state to indicate a "don't care" or "both" condition.

attribute list manager
the object manager for attribute lists

attribute manager
the object manager for attributes

character manager
the object manager for characters

characteristic manager
the object manager for characteristics

creature manager
the object manager for creatures

default race
This is the race upon which all other races and characters are based.    Any changes to the default race
have an effect on all races and through them on all characters.

item manager
the object manager for items

note manager
the object manager for notes and GM notes

object manager
Each type of object in CampMan has a different manager.    The object's manager is the window you use
to enter/modify the objects properties.

pop-up menu
A pop-up menu is a special menu that is accessed by clicking the right mouse button    within a window.   
The pop-up menu usually contains only specific functions used with that window.
Many of the entry fields in Campaign Manager have pop-up menus for the user's convenience.

race manager
the object manager for races

To register this program,
 fill out and send in the

$ K + Registration Form

You can use the File Manager to create directories and copy files.    See the Windows Manual.

Command line parameters
can change the startup
behavior of the program.
See Command Line Parameters.

Once a variable has been selected, the only way to remove the selection completely is to press the
evaluate button.

variables and functions are replaced by numbers before an equation is evaluated, so they may be used
as if they were numbers

The value field may display an error rather than a number.
See Compilation Errors and Evaluation Errors for more information.

The save button is disabled until the entered definition compiles without error when the evaluate button is
pressed.

functions may have empty argument lists

one unary operator may proceed any operand without causing this error

When an object name is selected and the list of object names has the input focus, pressing Ctrl-C copies
the selected name to the Windows Clipboard.

The "Attribute Lists" object type is a special case.    If "Attributes" is checked but "Attribute Lists" is
unchecked, then each member of an attribute list will be shown.    If "Attribute Lists" is checked, then only
the attribute list's name is shown.
The "all" button does not check the "Attribute Lists" check box.

Since owned attributes always have a level of 1 when they are listed, Race and Character managers do
not indicate a level for them in the attributes list.

Whenever you start typing on the keyboard while the attributes list has the input focus, an entry field will
pop up to accept your input.
In addition, you may simply press "Ctrl-V" and the entry field will pop up with the text currently in the
Windows Clipboard already entered.
Finally, when you press "Ctrl-C" the selected attribute's name followed by its assigned level is copied to
the Windows Clipboard.

Whenever you start typing on the keyboard while the attributes list has the input focus, an entry field will
pop up to accept your input.
In addition, you may simply press "Ctrl-V" and the entry field will pop up with the text currently in the
Windows Clipboard already entered.
Finally, when you press "Ctrl-C" the selected attribute's name followed by its assigned level is copied to
the Windows Clipboard.

While running in Player Access mode, GM notes may not be searched for and the "GM Notes" check box
will not be present.

Titles for GM notes are preceded by "(gm)" in the list box

Whenever you start typing on the keyboard while the attributes list has the input focus, an entry field will
pop up to accept your input.
In addition, you may simply press "Ctrl-V" and the entry field will pop up with the text currently in the
Windows Clipboard already entered.
Finally, when you press "Ctrl-C" the selected attribute's name followed by its assigned level is copied to
the Windows Clipboard.

This is a full fledged modeless dialog box.
You can switch the input focus with the Tab and direction keys
and pressing the Return key will roll the dice.
This is true whether the "emulate dialogs" feature is on or off.

This dialog can be accessed through the startup dialogs.
Start the program,
press the "View License..." button
and then press "Register" button.

